Packaging, supply and logistics
adoption of something he expects to be the next significant development in the cold chain: simulation software. Typically, a company will qualify the level of risk posed to a shipment by simulating the conditions as best it can, using chamber testing. The downside here is that, in order to be accurate, tests have to simulate the duration of a shipment, which means an average of five days, and with multiple tests, the time can easily snowball into weeks. “Now, we can build a model of a shipping system within computational fluid dynamics software, and then we can run a five-day test as a simulation in ten to 15 minutes,” says Peck. “It may not be 100% accurate, but you know what, chamber testing isn’t either. I can get hundreds of simulations together to get a really good understanding of how a shipping system would work in many different supply chain scenarios, which gives me a heightened level of confidence.”
The ability to predict potential excursions on shipping routes and monitor for near real-time changes proved invaluable during the pandemic, especially for Pfizer, whose vaccine had to be between -90°C and -60°C while in transit. “The Pfizer vaccine had to be kept extremely cold using dry ice,” says Peck. “They’ve presented with their partners on how these monitors were used to
Medical Device Packaging on Demand
SEE US AT
COMPAMED/Medica Hall 8A Stand K36
shawpak Newmarket Drive, Derby. DE24 8SW.
T +44 (0) 1332 579025 W
www.shawpak.co.uk E
sales@shawpak.co.uk
MD&M West Pack Booth 5325
shawpak USA Suite I, 10340 Camino Santa Fe, San Diego, CA 92121, USA.
T +1 (973) 281 2960 W
www.shawpakusa.com E
sales@shawpakusa.com
trigger the intervention to top up [the shipments] with dry ice.” Peck too used simulation software to aid in vaccine distribution in his role as global head of process-controlled transportation at AstraZeneca. “I was heavily involved in making sure that the vaccine got all over the world, not only within [AstraZeneca’s] direct-to-government network, but also through the COVAX programme,” he says. “In that scenario, I didn’t own the supply chain. I was packing the product and handing it to the customer’s freight forwarder at the airport, and they were shipping it globally.” Used to having visibility across the supply chain, Peck had to account for and protect products “for unknown durations against unknown ambient conditions”. “The use of this simulation software allowed us to test against lots of risk profiles and get probably close to 90% accuracy,” he says. “This was good enough to allow us to focus on the implementation.” Peck compares the level of risk management on each shipment as being similar to the charge on a smartphone. “You make sure you’ve got 100% charge at the start of the day, so you’ve got as long as possible that it can work.” In practical terms, this meant conditioning the components and packing each shipment in exactly the same way to mitigate the risks determined by the simulations. After that, the shipments were in the freight company’s hands, so Peck made sure to pass on as much information as possible to freight forwarders in case of an excursion. “We’d say ‘if there’s an issue, put [the shipment] in a cold store.’ By doing that, you’re going to increase the performance duration of that shipment system and therefore protect the product.” Looking forward, Peck hopes to be part of the push to bring simulation software to more of the pharmaceutical industry – especially as cell and gene therapy products are on the increase in several areas of medicine. “Most products coming to market now will have temperature control requirements, and with biologics, the manufacture of those products is very different.” In practice, that means the risk of losing a product due to temperature excursion or physical damage is a potential loss of tens of thousands of dollars, and even worse than that, the potential for a patient in dire need of a therapeutic having to wait even longer while already living on borrowed time. It might be a doctor in a white coat that delivers the life- saving injection, but years of progress in cold chain logistics and more recently data-driven insights will be the reason it reaches the hospital safe and on time. ●
148 Medical Device Developments /
www.nsmedicaldevices.com
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148 |
Page 149 |
Page 150 |
Page 151 |
Page 152 |
Page 153 |
Page 154 |
Page 155 |
Page 156 |
Page 157 |
Page 158 |
Page 159 |
Page 160 |
Page 161 |
Page 162 |
Page 163 |
Page 164 |
Page 165 |
Page 166 |
Page 167 |
Page 168 |
Page 169 |
Page 170