search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
The difference between liquefaction and dynamic separation explained


NorthStandard P&I Club has published a guide on Bulk Cargo Liquefaction and Dynamic Separation, explaining more about the differences between the two and presenting best practices to mitigate the phenomenen.


WHAT IS DYNAMIC SEPARATION?


Dynamic separation occurs during a voyage where the moisture in the cargo rises to the surface of a stow as the cargo consolidates due to vibration and vessel motion. This is caused by a mechanism similar to liquefaction, but the cargo contains enough fine particles such that the void spaces between particles are very small and impede the moisture flowing through the cargo. As the water becomes pressurized and begins to flow, fine particles are carried with it and create a slurry.


Unlike liquefaction where a portion of the cargo in its entirety flows like a liquid, dynamic separation generates a slurry of water and fine particles which is driven away from the consolidating portion of the stow to areas of lower pressure and collects on the top of the denser (consolidated) portion of the stow. In response to vessel motions, this slurry has a free surface effect causing incremental shifting of the centre of gravity in the hold, leading to a reduction of the vessel’s metacentric height (GM), negatively affecting the ship’s stability.


DIFFERENCES BETWEEN LIQUEFACTION AND DYNAMIC SEPARATION Liquefaction Definition Cargo state Cause Mechanism Movement Effect on ship stability


Cargo behaves like a liquid when the moisture content exceeds the transportable moisture limit (TML).


Entire cargo or significant portions flow as a liquid.


Excess moisture causes the cargo to lose its solid structure and behave like a liquid.


Moisture saturates the cargo, reducing friction between particles, causing the cargo to flow.


Cargo can flow freely, potentially shifting within the hold and causing instability.


Can cause significant shifts in the center of gravity, leading to dangerous angles of list and potential capsizing.


Detection Prevention


Examples of affected cargoes


Requires monitoring of moisture content before and during loading.


Ensure moisture content is below the TML before loading.


Iron ore fines, nickel ore, bauxite. Dynamic Separation


The moisture in the cargo rises to the surface during the voyage, creating a slurry of water and fine particles.


Slurry of water and fine particles forms on top of the consolidated cargo.


Vibration and vessel motion cause moisture to migrate to the surface, carrying fine particles with it.


Consolidation due to vibration and motion increases pressure, pushing water and fine particles to the surface.


Slurry forms a free surface on top of the cargo, leading to shifting of the center of gravity.


Creates a free surface effect that incrementally shifts the center of gravity, reducing metacentric height (GM) and negatively affecting stability.


Can be harder to detect as it develops during the voyage.


Requires proper sampling and testing, and awareness of the cargo's condition throughout the voyage.


Similar to liquefaction-prone cargoes but more influenced by the presence of fine particles and vessel motion.


96 | ISSUE 109 | SEP 2024 | THE REPORT


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148