search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Preventive methods: How to detect


torsional vibrations


The amplitude of torsional vibration can be destructive and since most machinery is not equipped to measure it, the first indication of a problem is typically failure of a drivetrain component. However, there are some methods for detection that can be utilized to determine the presence of torsional vibrations. Flexible shaft couplings often times provide tell-tale signs that can be detected visually upon disassembly or, in some cases, during operation. The flexible element(s) of the coupling (i.e. disc pack, gear teeth, grid, elastomeric blocks, etc.) which are meant to accommodate for shaft misalignment while transmitting the load are the components of the coupling that are primarily susceptible to damage which is visible. Additionally, shaft sections, keyways, and bolted flange connections can present visible damage; but this usually occurs in addition to flexible element damage due to the higher torque capacities of those interfaces and components.


For drivetrains which include a gearbox, audible noises may be detected when torsional vibrations are present. This can sound like ‘chattering” or looseness in the gear mesh. However, without a more detailed inspection, or actual measurements, the loads seen during these events cannot be determined. Note that radial vibration is sometimes measurable on gearboxes when torsional vibration is severe.


Fretting is the result of the relative movement of two surfaces subjected to a load. Torsional vibration can produce fretting wear in bolted flange connections, splines, and at hub/shaft interfaces. During inspection, couplings and shafts should be carefully inspected for signs of fretting as it tends to reduce the fatigue life and is a common crack initiation point. For ferrous materials, surfaces with fretting wear usually contain reddish-brown areas which are oxidized wear particles as well as some areas that appear polished as the wear particles begin to serve as a lapping compound. Photograph 2a shows a fretting wear pattern around a bolt hole of a coupling flange connection caused by relative movement of the flange and washer. Photograph 2b shows a different bolt hole with a crack that has begun to propagate and after initiation in the fretting zone.


Visual inspection should also be aimed at finding surface cracks in the load-carrying components. Attention should be paid to areas where the stress can become concentrated by sharp corners or an abrupt change in geometry such as steps in a shaft, keyways, welded joints, etc. The limitation of visual inspection is that small and sub-surface cracks are not visible to the naked eye. For critical equipment susceptible to torsional vibration, inspection methods for crack detection should include either dye penetrant or magnetic particle inspection (MPI). Dye penetrants are effective at quickly identifying surface cracks, but are not capable of detecting sub- surface cracks and can be difficult to use in small corners. MPI is typically the best method to detect cracks in ferrous materials. Examples of cracks detected using MPI in the root of gear teeth and a coupling component are shown in Photographs 3a and 3b, respectively.


Photographs 2a and b: Showing fretting wear around bolt hole from dynamic contact with mating washer (left) and crack initiated in fretting zone (right).


Photographs 3a and b: MPI crack indications in the root of gear teeth (left) and crack that propagated through a flexible coupling component (right).


66 | ISSUE 109 | SEP 2024 | THE REPORT


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148