search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Beginning with an understanding of the laws of motion, the torsional dynamics of any drivetrain can be analyzed during the equipment design stage to avoid the occurrence of adverse conditions. For equipment which is already installed, modern torque measurement systems can be utilized to verify theoretical models, evaluate changes to drivetrains components, or continuously monitor torque for effective defect identification. The integration of angular, radial, and axial vibrations can provide a comprehensive condition-based monitoring system for critical assets susceptible to these failures modes in numerous industries.


What is


distributed throughout the drivetrain. Drivers such as reciprocating engines and VFD-controlled motors; and driven equipment such as mills, large fans, reciprocating compressors, generators, and various turbomachinery can be susceptible to torsional vibration problems.


Depending on the source, torsional vibration can be present in different forms. Sudden impacting (an example shown in figure 1a) from intermittent loading, equipment start-up, or process upsets can produce vibrations that consist of a sharp peak followed by subsequent oscillations that eventually dampen out. Alternatively, torsional vibrations can be present in a more continuous nature as the result of constant process conditions, motor control fluctuations, or resonant conditions as shown in figure 1b.


torsional vibration?


Torsional vibration describes the angular movement of a shaft(s) in a drivetrain, which is superimposed on the steady-state rotational movement of a rotating or reciprocating machine. More simply, torsional vibration refers to the angular or ‘twisting’ movement of the rotating shafts that connect the various pieces of equipment in a drivetrain. This form of vibration can be induced by the driving equipment, the driven equipment, or simply be the result of how the various inertias (rotating masses) and spring stiffness are


As with any type of vibration, a resonant condition will exist when an excitation frequency is in close proximity to a natural frequency. Generally, torsional resonance is more prevalent in higher-speed (> 600 RPM) applications. An example of torsional resonance during the start-up and coast-down of a motor driven centrifugal compressor train is shown in Figure 1c. In this case the first torsional natural frequency was excited by the rotational speed, creating oscillating torques at a frequency of 16 Hz. These torque measurements can be used to identify potentially harmful operating conditions that need to be avoided.


Figures 1a-c: Torque-time waveforms resulting from various conditions such as impacting (a, top left), continuous oscillations from process conditions (b, top right) and resonant conditions which occurring intermittently during start-up and shut-down (c, bottom).


THE REPORT | SEP 2024 | ISSUE 109 | 63


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148