search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Figures 8a and b: Various type of adverse torsional vibration which can occur during start-up (left) or process upsets (right).


The spectral data will provide the analyst with information on the frequencies present in the waveform. Process conditions and angular clearances such as backlash or wear can produce torsional oscillations within the equipment; however, it is more common to see the system natural frequencies in the in the spectral data. This is the frequency which the shaft(s) oscillate at after an impacting load or when the operational speed coincides with a torsional natural frequency. While there are an infinite number of torsional natural frequencies for a drivetrain, it is likely that only the first and sometimes the second TNF are observed. Higher-order natural frequencies are much less energetic and more difficult to excite. The spectral data can be utilized to verify theoretical calculations of torsional natural frequencies so that changes to operational speeds can be properly evaluated, ensuring that adverse conditions are avoided. Additionally, the empirical data will allow for the mathematical model of a drivetrain to be ‘normalized’, providing confidence in evaluating any changes (motor upgrades, coupling changes, etc.) proposed to the drivetrain to improve reliability without introducing unforeseen problems.


For applications that are susceptible to torsional vibration (either due to resonance at operating speeds or from impacting loads), the integration of torque measurements with radial and axial vibration from eddycurrent probes or case-mounted accelerometers can provide a comprehensive condition monitoring system. First, the torque measurements can be used to trigger predicate-based recording of vibration data. Because light and intermittent loads can pose difficulties in the collection of useful vibration data, torque measurements can help analysts distinguish between data which is representative of a fault and that which is just a characteristic of how the equipment is operated. To illustrate this, data from an online vibration monitoring system which simultaneously records torque and vibration data on a metal rolling application is shown in Figure 9. The figure shows spectral data recorded with a case-mounted accelerometer on the reduction gearbox, which is intermittently loaded. The vibration measurements for lightly-loaded (blue) and fully- loaded (purple) conditions were triggered by a signal from the torque measurement system installed on the output shaft of the gearbox. The difference in the spectral data is obvious, but without knowing the transmitted torque, it would be difficult to determine if the vibration increases are due to load or a fault in the machinery.


Figure 9: Loaded (purple) versus unloaded (blue) vibration spectrum data acquired from case mounted accelerometers. THE REPORT | SEP 2024 | ISSUE 109 | 73


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148