search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
How to use torque measurements to determine acceptable stress levels


To make practical use of the measured torque, the value needs to be related to the mechanical stress which it induces in a drivetrain component. Torque can be damaging to equipment when it induces stresses in the load-transmitting material that exceed the endurance limit or yield limit. The endurance limit is the maximum stress that a material can be subjected to repeatedly without failing from fatigue. These values are typically much lower than the stress required to yield (permanent deformation) or fracture the material from a single applied load. Fatigue typically progresses in (3) stages: crack initiation, crack propagation, and final fracture. During the initial stages of fatigue crack propagation (Photograph 1a), no deformation of the material occurs so long as the stresses remain below the yield limit. This is the one of the primary reasons that torsional failures are difficult to detect. Later in the failure progression, or in cases of high amplitude loads, deformations (yielding) of a rotating shaft, flexible coupling, or gear teeth can typically be detected using traditional means of vibration analysis because they can cause the component to rotate


eccentrically, producing a mass imbalance (Photo 1b). It should be noted that material yielding can occur once a fatigue crack has grown and the component is no longer capable of transmitting the nominal load even if they are below the material yield limit. Also cracks and fractures which occur at a 45-degree angle on a shaft are typical in torque related failures.


One relatively simple method for determining acceptable stress levels from alternating loads is the Modified Goodman Diagram. This method plots the value of mean stress on the horizontal axis and the value of alternating stress on the vertical axis. A combination of mean and alternating stresses in the region below the ‘yield line’ and ‘modified Goodman line’ (shaded gray in the figure) indicates an infinite fatigue life. Stresses outside of this region indicate finite life. The values plotted in Figure 2 were calculated to understand the effect of alternating loads on the fatigue life for gear teeth, specifically bending fatigue in the tooth root. The mean stress was considered to be the stress from the nominal driving torque (based on nameplate power and speed). As torque measurements were not available, hypothetical values of alternating torque where then added, based on an increasing percentage of the nominal torque. The analysis showed that mean stresses of 4 to 5 times the nominal values combined with cyclic loads could create would create a finite life situation. While gear tooth stresses are relatively simple to calculate, other methods such as finite element analysis are better suited for more complex geometries.


Photographs 1a and b: Failed rotating component in the (a) early and (b) later stages of failure.


64 | ISSUE 109 | SEP 2024 | THE REPORT


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148