search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Fatigue is sometimes used synonymously with age-related failure or equipment wear-out. There is a component of time, in relation to the cycles of vibration, but this can be matter of seconds in some cases. Fatigue failures are typically characterized as either low-cycle (<1,000 cycles) or high-cycle (>1,000 cycles).3 Theoretically, if a drivetrain is operating at 1,800 RPM and the speed coincides with a natural frequency that is synchronous with speed, short cycle fatigue failure could occur within 30 seconds, provided the stresses induced are above the material endurance limit.


Failures due to periodic impact loading can resemble those due to torsional oscillations. The impact represents one or several cycles of vibration which typically occur during start-up, shut-down, speed changes, or are a result of the mechanics of the process. Again, the magnitude of the stresses and frequency in which they occur will determine the fatigue life.


Understanding torsional dynamics


As with any form of vibration, the oscillatory movement of an object is governed by the universal laws of motion and is usually described in terms of a mass-damper- spring system. Analogous with mass in linear vibration, inertia describes a rotating mass in a torsional reference frame. In a drivetrain, examples of inertia include the motor rotors, gearing, flywheels, compressor rotors, pump impellers, etc. which are connected to each other with torsional springs such as couplings and shaft sections. A simple torsional system is shown in Figure 4, and could be used as a simple representation of a motor- driven fan. The undamped natural frequency of this system is defined in Equation 1. For larger drivetrains with additional inertias, the calculations for natural frequencies become more complex.


Figure 4: Simple 2-Inertia System showing external torque applied and resultant forces transmitted. Equation 1: Undamped Natural Frequency of 2-inertia system in Figure 4


When drivetrains are designed, it is typical that the torsional natural frequencies are calculated and compared with known excitation sources to ensure that resonant conditions do not exist under normal operating conditions throughout the intended speed range. A Campbell Diagram, as shown in Figure 5, is commonly used to determine where natural frequencies intersect with excitation sources.


Horizontal dotted lines represent the system natural frequency. When these intersect with potential forcing frequencies (1X RPM, 2X RPM, shown in the angled lines), there is a potential that you will have a resonant condition. This is of most concern when these intersections occur within the operational speed range.


68 | ISSUE 109 | SEP 2024 | THE REPORT


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148