EMS GRIDS & TEM SUPPORT FILMS CATALOG EDITION V TEM SUPPORT FILMS
Graphene Support Films for TEM (continued) Application
Direct imaging of soft and hard nanomaterials
The interfaces between soft and hard nanomaterials have been the subject of extensive research.
Nanoparticles coated with molecular layers have been shown to self-assemble into novel structures that could potentially be used in electronics, sensors, and photonics. Self-assembly is influenced by the nature of molecular coatings and thus more detailed characterization of these soft materials is needed.
However, imaging surface molecules and their interfaces with nanoparticles at the atomic scale is a significant challenge. The transmission electron microscope (TEM) imaging of functionalized nanoparticles has been attempted.
However, it has not been possible to observe molecular surface layers and their interfaces with nanoparticles at the atomic level. Modern aberration-corrected TEMs can produce atomic- resolution images of soft and hard nanomaterials. However, conventional TEM support films (e.g. ultrathin amorphous carbon) limit the capabilities of these advanced microscopes because they contribute to overall electron scattering and diminish the contrast of low-atomic number specimens. The TEM imaging of the interfaces between soft and hard nanomaterials therefore requires better support films that have a lower dynamical interference with an imaging object [3].
Graphene is the ideal TEM support film. The material possesses a highly ordered structure and is atomically thin, chemically inert, structurally stable, and electrically and thermally conductive. The ultrahigh-quality graphene produced by the substrate-free gas-phase method [1, 2] has enabled the unsurpassed TEM imaging of organic molecules and the interfaces between soft and hard nanomaterials. The pure and highly-ordered sheets were used as a near-invisible support film to directly image the atoms in a gold nanoparticle and its surrounding citrate coating [3]. The results showed that the synthesized graphene can be used to directly observe nanoparticles functionalized with a diverse range of molecular coatings, such as proteins and DNA
We offer ultrahigh-quality graphene that is produced through the substrate-free gas-phase method[1]. The graphene created by this technique possesses a highly ordered structure that is composed of 99% carbon by mass (1% hydrogen)[2]. This graphene was used to directly image gold nanoparticles and their organic surface molecules in both conventional and
atomic-resolution TEMs at a level that greatly surpasses any current TEM support film[3].
Our graphene provides an invisible, crystalline background that enables the unrivaled TEM characterization of organic and inorganic nanomaterials.
References:
[1] Dato et al., “Substrate-Free Gas-Phase Synthesis of Graphene Sheets”, Nano Letters 8, 2012–2016 (2008).
[2] Dato et al., “Clean and highly ordered graphene synthesized in the gas phase”, Chemical Communications, 6095–6097, (2009).
[3] Lee et al., “Direct Imaging of Soft-Hard Interfaces
Additional References:
Galatzer-Levy, J. Graphene "sandwich" improves imaging of biomolecules. University of Illinois at Chicago News Center Web Site. February 4, 2014. Available at:
http://news.uic.edu/graphene-sandwich- improves-imaging-of-biomolecules. Accessed February 12, 2014.
Wang, C., Qiao, Q., Shokuhfar, T. and Klie, R. F. (2014), High-Resolution Electron Microscopy and Spectroscopy of Ferritin in Biocompatible Graphene Liquid Cells and Graphene Sandwiches. Adv. Mater.. doi: 10.1002/adma.201306069
Dato, A. and Frenklach, M., "Substrate-free microwave synthesis of graphene: experimental conditions and hydrocarbon precursors", New Journal of Physics, 12, 1367-2630 (2010).
Ordering Information
Graphene products come available in five different ways, allowing you to choose which is best for you
a) As a solution of 0.1 mg Graphene in 1 ml of Ethanol. A homogeneous solution will take less than 30 seconds to create by sonicating the Graphene-solvent mixture. One is able to coat their own grids using this solution.
b) As Graphene-enhanced lacey carbon TEM grids. 200 and 300 mesh. These grids are created by coating our existing lacey carbon grids with graphene. Through a unique drop method, solution is dispersed onto the Lacey Carbon Grid.
c) As dry, synthesized Graphene powder, 1 mg. Cat. No.
Description
GF1200 GF1201 GF1202 GF1203 GF1204 GF1205
0.1 mg Graphene in 1 ml of Ethanol
Graphene-Enhanced Lacey Carbon TEM Grid 200 # Cu Graphene-Enhanced Lacey Carbon TEM Grid 200 # Ni Graphene-Enhanced Lacey Carbon TEM Grid 300 # Cu Graphene-Enhanced Lacey Carbon TEM Grid 300 # Ni Synthesized Graphene Powder, 1 mg
Qty. each each each each each each
55
A low-magnification image of a (1) gold nanoparticle 10 nm in diameter on a (2) transparent synthesized graphene support film, (3) the vacuum, and (4) a lacey carbon support.
An atomic-resolution image of a 10 nm gold nanopar- ticle and its surrounding citrate capping agent on a synthesized graphene support film.
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92