76 A. Khan et al.
TABLE 1 List of sequences (of domestic dog Canis familiaris, leopard Panthera pardus, lion Pathera leo and six subspecies of tiger Panthera tigris) from the National Center for Biotechnology Information database used in this analysis.
Accession numbers
NC_051810.1: 68724255–68726124
AB048589.1 MF136765.1 OQ117410.1 MN124244.1 AB211408.1
AB211409.1 AB211410.1 AB211411.1
AF053031.1 AF053033.1 AF053034.1 FJ895266.1
Species Canis familiaris Canis familiaris
Comment Numt
Numt
Panthera pardus Numt Panthera pardus Panthera leo
Numt P. tigris altaica
P. tigris altaica P. tigris altaica P. tigris altaica
P. tigris altaica P. tigris altaica P. tigris altaica P. tigris altaica
MH893763.2:14173–15312 P. tigris altaica MN624080.1:14530–15669 P. tigris altaica AF053053.1 AF053019.1 AF053024.1 AF053025.1
JF357967.1:14172–15311 JF357968.1:14172–15311
P. tigris tigris P. tigris tigris P. tigris tigris P. tigris tigris P. tigris tigris P. tigris tigris
KF892541.1:14173–15312 P. tigris tigris AF053050.1 AF053051.1
JF357971.1:14077–15216 JF357972.1:13017–14156 FJ403465.1
FJ403466.1 FJ403467.2
MH290773.1
OQ601561.1 OQ601562.1
P. tigris corbetti P. tigris corbetti P. tigris corbetti P. tigris corbetti P. tigris sondaica
P. tigris sondaica P. tigris sondaica P. tigris sondaica
P. tigris sondaica P. tigris sondaica
HM589214.1:15069–16208 P. tigris amoyensis HM589215.1:15113–16252 P. tigris amoyensis NC_014770.1:15113–16252 P. tigris amoyensis AF053054.1 AF053045.1 AF053046.1 AF053047.1 AF053048.1
JF357970.1:14173–15312 OQ629466.1 OQ629467.1 OQ629468.1 OQ629469.1 OQ629470.1 OQ629471.1
Numt
Large amount of missing data
Large amount of missing data
DNA extract re-sequencing
The Numt sequences were amplified because of stochastic binding of the primers to the Numt region instead of the mitochondrial cytB region (Sui et al., 2024) in Wirdateti et al. (2024); we attempted to rectify this through repeated PCR and sequencing (Fig. 1). In Round 1 we amplified the DNA extract using 3, 4, 5 and 7 μl templates in a 30 μl PCR, using the conditions described in Wirdateti et al. (2024). The amplicons from these reactions were not visible in agarose gel electrophoresis. Thus, we further amplified the 3 and 5 μl products from all four PCRs (henceforth referred to as ‘amplicon templates’) in the previous step using the same PCR conditions in a 30 μl volume (leading to a total of eight reactions in this Round 2). Five of the eight reactions in Round 2 yielded bands on the agarose gel, four of which were from the 5 μl amplicon template and in the PCR in which the 7 μl original template was used. The 3 μl amplicon template in the second PCR also yielded bands. We amplified all templates on different days to avoid cross-contamination. The reaction with the 5 μl original template in Round 1
Large amount of missing data
Large amount of missing data
and the 5 μl amplicon template in Round 2 of PCR yielded the c. 900 bp-long DNA fragment from the test hair strand sequence that is presented here. We aligned these new sequences to the sequences listed in Table 1 using MAFFT
We built neighbour joining trees using MAFFT.
We chose the default option for multiple sequence align- ment. For building the tree we chose the conserved sites option, which retained 252 sites for Dataset 1, 937 sites for Dataset 2 and 240 sites for Dataset 3. We used raw dif- ferences for the substitution model and performed boot- strap resampling 1,000 times.
P. tigris sumatrae Numt P. tigris sumatrae P. tigris sumatrae P. tigris sumatrae P. tigris sumatrae P. tigris sumatrae P. tigris sumatrae P. tigris sumatrae P. tigris sumatrae P. tigris sumatrae P. tigris sumatrae P. tigris sumatrae
FIG. 1 DNA amplification strategy used in this study.We performed two rounds of PCR. In Round 1 we used DNA extracts from samples as templates, and in Round 2 we used the amplicons from Round 1 as templates. The numbers on the arrows indicate the volumes of the templates used for each step. (Readers of the printed journal are referred to the online article for a colour version of this figure.)
Oryx, 2025, 59(1), 75–80 © The Author(s), 2025. Published by Cambridge University Press on behalf of Fauna & Flora International doi:10.1017/S0030605324001297
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140