search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Yellow‐footed rock‐wallaby in Queensland 129


in the 2010s(1.86/site) and 2020s(1.83/site) than in the 1970s–1980s(4.81/site), when 10 or more animals were seen at 11 sites. Six of these sites were revisited, and although P. xanthopus celeris was present at all of them, numbers of individuals sighted ranged from 0 (dung only detected) to .10 per site. Across all sites surveyed, 10 or more animals were recorded at two sites in the 2010s and at four sites in the 2020s. Pete’s Hill South was the only site with.10 ani- mals recorded during both survey periods. No data were available on time spent at sites during the surveys of the 1970s–1980s, but on average 1–2 sites were assessed per person or team per day. In contrast, 4–5 sites were typi- cally visited per day during the 2010s and 2020s surveys, and it therefore seems probable that less time was spent at each site during these later surveys.


Threats to the yellow-footed rock-wallaby in Queensland


FIG. 2 Boxplots showing differences in mean effective distance to water, with sites grouped by survey period (previous surveys: 1973–1987 from Gordon et al., 1978, 1993; recent surveys: 2010–2015 and 2020–2023 from this study) and the presence or absence of Petrogale xanthopus celeris. Mean effective distance to water has been calculated for each site at the local (100 m) and regional scales (10 km). Outliers (outside the 75th/25th percentile value ± 1.5 × the interquartile range) are shown as open circles. There were no significant differences or consistent patterns in mean effective distance to water between the groups.


(Gowan and Grey ranges), and its 2022 absence may reflect natural dynamism in occupancy. There were apparent declines in abundance at eight sites (12%). Six of these declines were between the 1980s and 2010s; all of these sites that exhibited declines were revisited for a third time in 2022–2023 when abundance remained at the same level (common for three sites, uncommon for three sites). Two apparent declines occurred between the surveys con- ducted in the 2010s and 2020s. Six sites (9%) experienced declines in abundance between the 1980s and 2010s but subsequent recovery by 2023; three of these were near Yaraka, two near Stonehenge and one was in the Gowan Range (Fig. 4). Three sites in the Cheviot Range had increases in


P. xanthopus celeris abundance (one between 1987 and 2011 and two between 2010 and 2021). Recolonization occurred at eight sites in theWallaroo, Edinburgh andWarrego ranges, near the north-eastern extent of the distribution of the sub- species. In theWallaroo and Edinburgh ranges the taxon was present at only one site in the 1970sand 1980s, uncommon at five of nine sites surveyed in 2011 and common or abundant at the six survey sites in 2022. Overall, the mean numbers of P. xanthopus celeris indi- viduals observed at sites where they were present were lower


Common wallaroos were the most abundant sympatric herbivore in the study area, being present at all but two sites visited during 2010–2023 (noting that 10 sites did not have wallaroo presence recorded) and were common at 52% of these. A statistically significant association existed between wallaroo presence and yellow-footed rock-wallaby presence (χ2(1)= 72.97,P,0.001) and abundance (χ2(3)= 50.83,P,0.001). Goats occurred throughout the study area. They were most widespread in the 1970s–1980s and 2010s, occurring at 87 and 50% of sites, respectively, and being common or abundant at 56 and 25% of these, respectively. Goats only occurred at 35% of sites surveyed in the 2020s and were common at seven of them.No significant relation- ship was evident between yellow-footed rock-wallaby abun- dance and goat abundance (Fisher’s exact test, P = 0.116). All sites recolonized by P. xanthopus celeris during this study had declining goat abundance, from common in the 1970s and 1980s to uncommon in 2011 and absent in 2022. Rabbits were present at 12 sites, mostly on tablelands. The valleys and slopes adjacent to 24 sites had been


broadscale-cleared, and a further 23 sites had been partially cleared. Clearing had occurred mostly in the north-east of the study area, and all except one site east of the Bulloo River and north of Adavale (Fig. 1) were surrounded by wholly or partially cleared land. Clearing proximate to residual habitat was not a significant variable predicting yellow-footed rock-wallaby presence or abundance within known yellow-footed rock-wallaby habitat during 2020– 2023 (P.0.05). Of the 115 sites with P. xanthopus celeris presence in the post-2009 surveys, 28 (24%) had exclusion fences within 2 km and 39 (34%) had exclusion fences within 3 km. In 35 of these cases the fence bisected residual habitat. Most sites were outside recent exclusion fences; only 19 were within these fences. For surveys from 2010 onwards no relationship was found between P. xanthopus celeris presence (Fisher’s exact test, P = 0.057) or abundance


Oryx, 2025, 59(1), 123–135 © The Author(s), 2024. Published by Cambridge University Press on behalf of Fauna & Flora International doi:10.1017/S0030605324000760


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140