This page contains a Flash digital edition of a book.
58. Most types of gravity base structure are similar in form. Usually the base is hexagonal, octagonal or circular. Bases with a cruciform plan shape are also being considered, occupying a similar footprint.


59. 60.


The base is typically 1 to 2m deep. The shaft is usually cone shaped at the bottom, tapering to a cylinder at the top with an outer diameter of approximately 5 to 9m.


Some alternative gravity base concepts do not have a cone transition, just a cylindrical shaft, with an outer diameter of approximately 5 to 9m. The bases of these flat base gravity structures are much deeper, typically up to 10m, but the footprint sizes are similar and within the same envelope.


61. Footprint sizes for the base are outlined in Table 5.5 below:


Table 5.5 Gravity base structure dimensions Wind turbine size (MW)


7 12 Maximumdiameter (m)


40 60


Maximum Footprint (m2)


1600 3600


62.


For conical base gravity structures, the top of the base is usually 1 to 2m above sea bed or slightly more if a bedding layer is used to provide a level formation. However, in areas where sand waves are present, it is possible that the top of the base would be installed below sea bed level.


63.


For flat base gravity structures with only a cylindrical shaft, the top of base could be up to 10m above sea bed level.


5.4.4.2.1 Material requirement for gravity base structures 64.


65.


Gravity base structures are generally concrete with steel reinforcement and pre- stressing strand. There are also hybrid concepts that include a steel tower.


Secondary structures, such as handrails, gratings, fenders and ladders, would be produced using steel (or possibly another metal or composite material). The working platform could also be made from steel.


66.


The ballast material used is commonly sand. Other materials may be considered as an alternative, such as olivine, dolerite, basalt or pig iron. However, it is most likely that sand dredged locally to the site would be used, depending on the suitability of the material.


Preliminary Environmental Information May 2014


East Anglia THREE Offshore Windfarm


Chapter 5 Description of the Development Page 16


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114