This page contains a Flash digital edition of a book.
LEDmanufacturing  technology


analysis, which shows that a one-sigma variation is more damaging than a three-sigma or ten-sigma- variation. Automated in-line inspection can capture these small deviations by narrowing the distribution and enabling much cleaner SPC charting (see Figure 4).


One of the major downsides of manual inspection is that it is inherently dependent on a variety of uncontrolled variables, including the level of operator training, time of day, attentiveness to task, inspection speed and the amount of product that can be inspected. The upshot of all these uncontrolled variables is excessive “noise” in the statistical distribution of inspection results, which makes it far harder to uncover subtle process excursions (see Figure 4). In contrast, automated in-line inspection systems eliminate subjectivity and variability in the inspection process. Engineers can then direct all their focus at identifying variability in the production process, which speeds the identification of minor excursions that have the potential to make a major impact. Automated in-line inspection stations can be deployed at key points throughout the fab, tailored to the complexity of the particular LED fab processes (see Figure 5). If customers choose to employ our tools, they will be equipping their chipmaking facilities with inspection technologies and platforms that have already undergone extensive evolution and refinement in fabs making silicon ICs.


Our automated tools employ advanced optics that features scan and detection algorithms for enabling high-throughput, high-sensitivity inspection. It is easy to configure them for both smaller die sizes that are difficult to handle with manual methods, and larger die sizes that require rapid yield improvement. At the final output step, these automated inspectors also combine go/no-go assessment and accurate multi- bin defect classification with rule-based binning algorithms.


Exposing defects Ideally, process engineers in LED fabs will quickly spot excursions at key production steps. This will empower them to determine root causes and take corrective action before the wave of cumulative errors propagates throughout the rest of the production line. The good news is that this is relatively easy to do when automated in-line inspection is combined with Defect Source Analysis (DSA), which can relate the various sources of defects to impacts later in the production sequence.


Defect information, such as from the Klarity LED product, from key points throughout the production flow is communicated to the centralised database as industry-standard KLARF data (KLA Report File). This data can include images, sort/bin data, and other fab inputs that enable seamless correlation of


July 2011 www.compoundsemiconductor.net 35


Figure 4: Manual inspection introduces a substantial amount of noise into any measurement. The upshot is that deviations can go unnoticed when manual inspection is used, but are easy to spot when automated inspection is employed


information from throughout the fab (see Figure 6). Each KLARF contains detailed information, including the ID, location and size of the defect, as well as other information from the inspection tools. Engineers can access the defect data in the centralized database from PC-based clients through the system, enabling them to quickly perform a range of analysis functions, such as


creating/updating SPC control charts, or generating wafer maps, Pareto charts or image galleries to support DSA activities.


Thanks to automated event-based triggers, engineers – who can access a full range of inspection data and perform extensive analysis functions directly from their desks or workstations – can quickly determine root causes of defects without having to make multiple trips into the cleanroom or assemble and tabulate defect data by hand. It is also possible for engineers to track the morphology


Figure 5: Key LED


process points for deploying automated in- line inspection based on third- generation tools


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104