This page contains a Flash digital edition of a book.
industry  LEDmanufacturing


Wafer bonding: selecting the right process for making powerful, vertical LEDs


LEDs with a vertical geometry are promising candidates for deployment in solid-state lighting products because they can handle the high drive currents needed to deliver a high luminous output. Manufacturing this form of LED requires a wafer-to-wafer bonding process,which involves many variables that need to be optimised for the specific device design, say Thomas Uhrmann, Eric Pabo,Viorel Dragoi and Thorsten Matthias from EV Group.


W


Figure 1: A key features of the vertical LED is its highly reflective


sub-structure that excels at conducting the heat away. This allows the device to


operate at high currents, and consequently high luminous output


28 www.compoundsemiconductor.net July 2011


hite LEDs are already impacting the general lighting market, and their


penetration in this sector is widely expected to rise. The rate of adoption will be governed by three factors: luminous efficiency, cost per lumen installed, and lumens per socket.


One way to improve all three areas simultaneously is to increase LED efficiency. But even greater gains to the lumen output of the luminaire and its cost-per- lumen are possible by combining gains in efficiency with a higher drive current for the device. Cranking this up, however, increases LED heating. And to cope with this, the system designer must carefully


manage heat that flows from the device junction to the package, fixture and surrounding environment.


It is possible to increase the rate that heat flows out of the LED by using metal wafer bonding for transfer of the epistructure to another substrate. Take this step and the LED benefits on two fronts: it can rapidly conduct heat away through a metal bond with a low thermal resistance, and it can dissipate heat through a substrate with low thermal resistance.


This approach can not only enhance the electrical properties of the nitride-based white LED, but also its blue variant and its red, orange and yellow cousins


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104