search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Figure 2.26: Comparison of P-wave and converted PS- wave (right) images through the same geological section. The BSR is clearly visible on the P-wave data (left) but is not observable on the PS-wave data. Note that the PP and PS data are plotted in opposite direction, to ease the comparison. (Courtesy PGS).


PP


which principally changes in response to variations in lithology, porosity, pore fluid and stress state, can be estimated by pre- stack P-wave AVO analysis. However, the record of hydrocarbon detection by AVO analysis is mixed, and AVO analysis is used nowadays with great care. Te VP/VS ratio can also be estimated from post-stack P- and PS-wave reflections. A key question is whether VP/VS can be found with higher accuracy and reliability using 4C data. Can it be quantitatively estimated from pressure and shear records? Teory predicts that this can be done. However, we need several case studies emphasising the quantitative aspects of measuring elastic subsurface parameters before this question can be fully answered.


Overpressure zones: Except near the surface (typically the first kilometre), the values of VP, VS and therefore VP/VS are quite insensitive to changes in differential pressure. (Differential pressure is the difference between overburden pressure and pore fluid pressure.) However, when an overpressured zone with anomalously high pore fluid pressure is encountered in the deeper section, anomalies in the VP/VS ratio can be measured. Overpressure implies a decrease in differential pressure, which tends to decrease both P- and S-wave velocities but increases the VP/VS ratio. Hence, from VP/VS analysis from pressure and from shear-wave sections, overpressure zones may be identified. Duffaut and Landrø (2007) found that the VP/VS ratio


increased from 1.9 to 7 using time-lapse seismic data acquired at the Gullfaks field. Due to water injection, the pore pressure in the reservoir had increased by approximately 5–7 MPa, and the increase in VP/VS ratio is interpreted as being caused by this pore pressure increase. For the Statford field, where the sand is more consolidated, the corresponding change in VP/VS ratio was estimated to be 1.9 to 2.0, significantly less. Tis difference is not only attributed to the difference in rock consolidation, but also to the fact that for the Gullfaks case the pore pressure in 1996 was close to the fracking pressure. Tis means that the contact between the rock grains weakens, and the shear wave velocity drops essentially to zero, while the P-wave velocity approaches the fluid velocity (1,500 m/s), and hence the VP/VS ratio can be abnormally high. If we assume


PS


that the P-wave velocity is close to the water velocity then it means that the shear velocity is close to 215 m/s (assuming Vp/Vs=7), which is extremely low. It should be noted that the uncertainty in this estimate is significant.


Anisotropy and fractured reservoirs: Any presence of oriented fractures and/or directional horizontal stress fields can create azimuthal anisotropy in the subsurface. Predicting directions of oriented fractures and fracture density and possibly obtaining quantitative information about stress state underground (stress orientation and relative magnitude) may be critical for understanding how fluids and gases flow through a reservoir, and for determining drilling locations and optimising reservoir productivity. Two effective medium models which describe azimuthal


anisotropy are transverse isotropy with a horizontal axis of symmetry (HTI), and orthorhombic anisotropy. HTI can be caused by a system of parallel penny-shaped vertical cracks embedded in an isotropic matrix. Orthorhombic anisotropy, which is believed to be a more realistic model of fractured reservoirs, may result from a combination of thin horizontal layering and vertically aligned cracks. From P-wave data, azimuthal anisotropy is often subtle


and quite difficult to recover. Shear waves, however, are more sensitive to azimuthal anisotropy. Terefore, by estimating azimuthal anisotropy from an analysis of mode-converted shear waves, fracture parameters and/or unequal stress fields can be predicted. Two methods have been proposed to extract this information from marine multi-component data: • the study of shear-wave splitting for near-vertical propagation;


• the study of reflection amplitude variations as a function of offsets and azimuths. Both methods have the potential to determine the fracture


orientation and density of the vertical fractures. Te second method has attracted particular interest, as it is also sensitive to the fluid content of the fracture system. From amplitude analysis it may be possible to find whether the fracture network is fluid-filled or gas-filled.


73


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284  |  Page 285  |  Page 286  |  Page 287  |  Page 288  |  Page 289  |  Page 290  |  Page 291  |  Page 292  |  Page 293  |  Page 294  |  Page 295  |  Page 296  |  Page 297  |  Page 298  |  Page 299  |  Page 300  |  Page 301  |  Page 302  |  Page 303  |  Page 304  |  Page 305  |  Page 306  |  Page 307  |  Page 308  |  Page 309  |  Page 310  |  Page 311  |  Page 312  |  Page 313  |  Page 314  |  Page 315  |  Page 316  |  Page 317  |  Page 318  |  Page 319  |  Page 320  |  Page 321  |  Page 322  |  Page 323  |  Page 324  |  Page 325  |  Page 326  |  Page 327  |  Page 328  |  Page 329  |  Page 330  |  Page 331  |  Page 332  |  Page 333  |  Page 334  |  Page 335  |  Page 336  |  Page 337  |  Page 338  |  Page 339  |  Page 340  |  Page 341  |  Page 342  |  Page 343  |  Page 344  |  Page 345  |  Page 346  |  Page 347  |  Page 348  |  Page 349  |  Page 350  |  Page 351  |  Page 352