search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
is varied between successive shots along a sail line (Haavik and Landrø, 2015). Te common factor in these marine source configurations is that they involve sources at more than one depth. We note that Cholet and Fail (1970), Smith (1984) and Lugg (1985) proposed the deployment of sources at different depths and then depth-synchronising the firing such that primary peaks align in phase. Tis design idea has since been adopted and adapted by several authors. Huizer (1988) advocated the use of extended arrays to achieve improved primary-to-bubble ratio and signature shape of the seismic signals. A number of authors have pointed out the importance of


considering not only ghosts but also the hydrostatic pressure in broadband source depth design (e.g., Davies and Hampson, 2007; Parkes and Hegna, 2011; Hopperstad et al., 2012; Landrø and Amundsen, 2014; Haavik and Landrø, 2016). Te bubble time period (representing the fundamental frequency) and the ghost spectrum represent two competing effects. In fact, the reduced source ghost attenuation that can be achieved at low frequencies by increasing source depth is counteracted by the increase in the fundamental frequency (decrease in bubble time period) of the airguns as they are towed deeper. Te hydrostatic pressure varies with depth below the free surface. At shallow depth and low hydrostatic pressure, the bubble time period of the source is longer and consequently richer in low frequencies. At deeper depth and higher hydrostatic pressure, the bubble period is shorter and thus less rich in low frequencies. It may be possible to tune the periods of the gun bubbles from the higher and deeper gun arrays so that they match in order to improve subsequent data processing by firing the deeper sources at different air pressure to the upper sources.


3.3.6 Firing a Big Airgun at Very Shallow Depth


Amundsen et al. (2017b) present experimental findings from airgun source tests in 2010 in the ford of Trondheim, Norway, using a 1,200 in3


gun, where the


focus is on the gun firing at approximately 1.3m. Only one measurement was taken at this depth as the airgun tests were not designed to test shallow firing. We will see that its signature is broadband, has insignificant bubble energy (since the air bubble bursts out in the atmosphere at its first expansion), and interestingly, has higher amplitudes in the spectrum between 0.5 and 2 Hz than guns fired at 3.3m or 5.3m. Te observations we present might be a step in the direction of designing more optimal low- frequency sources for seismic exploration. Te first observation on insignificant bubble energy is


perhaps not very surprising, since this effect for explosives was shown by Lay in 1945. And as we have learnt so far in this chapter, whereas the bubble problem of explosives was overcome by putting the explosive at very shallow depth, the bubble problem of the airgun was handled by the tuned airgun array concept. Further, we note that the signatures of airguns fired at depths of 3m and deeper have been thoroughly investigated. When the airgun releases a volume of air into the water, the air produces a steep-fronted shock wave followed by several oscillations resulting from the repeated collapse and expansion of the air bubble (bubble pulse). We refer the reader to landmark


105


papers by Vaage et al. (1983) and Ziolkowski (1987). However, we are not aware of published studies of airguns where the guns are fired at depths shallower than 2m. We note that shallow-towed big airguns can be used in VSP


or site surveys. Since the signature from a large shallow gun has extremely little bubble energy, de-signature is considerably simplified in the processing of such data. Generally, in site surveys a small volume airgun is used, typically 40 to 400 in3 towed at a depth of 2–3m.


,


3.3.6.1 Fjord Test A source signature field test was done in the Trondheim Fjord in 2010 using a single stationary conventional 1,200-in3


airgun


hanging from A5-buoys. Te water depth at the test location is approximately 390m. Te weather conditions were excellent during the test (calm sea). Ambient noise recordings did not indicate significant ocean noise at low frequencies. A TC4043 Miniature hydrophone offering a wide frequency range was suspended by a wire, and a weight was used to keep it stationary at 80m depth. For each source depth, approximately 30.3, 20.3, 10.3, 7.3, 5.3, 3.3, 2.3, and 1.3m, several shots were fired, and data showed good repeatability for the shots fired at the same depth. At 1.3m depth, however, the gun was fired once only. Figure 3.18 shows two photos of the air bubble venting to the atmosphere. Figure 3.19a shows all the data on which this analysis is


based. To equalise data each trace has been multiplied by the difference between the hydrophone and gun depths. Tis


Figure 3.18: In a source test in the Trondheim Fjord in 2010, a 1,200 in3 airgun was fired


just beneath the sea surface at 1.3m while hanging from A5-buoys. A shallow-fired big airgun source gives a broadband pulse with no bubble effects since the air bubble is vented to the atmosphere during its initial expansion. The downgoing signal is significant and useful in seismic exploration.


Statoil


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284  |  Page 285  |  Page 286  |  Page 287  |  Page 288  |  Page 289  |  Page 290  |  Page 291  |  Page 292  |  Page 293  |  Page 294  |  Page 295  |  Page 296  |  Page 297  |  Page 298  |  Page 299  |  Page 300  |  Page 301  |  Page 302  |  Page 303  |  Page 304  |  Page 305  |  Page 306  |  Page 307  |  Page 308  |  Page 309  |  Page 310  |  Page 311  |  Page 312  |  Page 313  |  Page 314  |  Page 315  |  Page 316  |  Page 317  |  Page 318  |  Page 319  |  Page 320  |  Page 321  |  Page 322  |  Page 323  |  Page 324  |  Page 325  |  Page 326  |  Page 327  |  Page 328  |  Page 329  |  Page 330  |  Page 331  |  Page 332  |  Page 333  |  Page 334  |  Page 335  |  Page 336  |  Page 337  |  Page 338  |  Page 339  |  Page 340  |  Page 341  |  Page 342  |  Page 343  |  Page 344  |  Page 345  |  Page 346  |  Page 347  |  Page 348  |  Page 349  |  Page 350  |  Page 351  |  Page 352