search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
be intrinsic permeability. Sediments of high intrinsic permeability may have the capability to host hydrate at high saturations (50–90% of pore space).


Mud and fine silt occurences: Te category for muds and fine silt lies below marine sands in the gas hydrate resource pyramid. Fractured muds are less permeable, usually smaller-grained sediments that may host gas hydrates in fracture-related permeability. Drilling on the Indian and Korean margins and in the Gulf of Mexico has found gas hydrate filling pervasive fractures within low permeability sediments (e.g., silts and clays). Such sediments may not have a high average saturation of gas hydrate, maybe around 20%, but targeted production from gas hydrates within the fractures could theoretically yield significant gas. At the base of the resource pyramid lie gas hydrates in low


Figure 8.26: Hydrate Energy International (HEI) recently released estimates of the gas hydrate resource potential, utilising a petroleum systems approach.


permeability, undeformed fine-grained muds. Such sediments host most of the global gas in place in methane hydrates and are unlikely to become a target for commercial production of gas from methane hydrates. Te saturation typically is only 5%. Sea-floor mound deposits are small size and ephemeral.


Tey are environmentally sensitive due to associated unique biological communities and thus unattractive as a resource target.


8.4.2 Potential Worldwide


In conventional petroleum systems analysis, the geological components and processes necessary to generate and store hydrocarbons are well established: source, migration, reservoir, seal, and timing. To apply this petroleum system model to a methane hydrate resource system, one needs also to incorporate the parameters that determine methane hydrate stability conditions: formation temperature and pressure, pore water salinity, water availability, gas source, gas transport, gas concentration, and the time over which the system evolves. Recently, Hydrate Energy International (HEI), as part


of the Global Energy Assessment being conducted by the International Institute for Applied Systems Analysis (IIASA), released the results of a new evaluation of the gas hydrate resource potential, utilising a petroleum systems approach (Figure 8.26). Teir median assessment is around 43,000 Tcf.


8.4.3 Gas Hydrate Accumulations


Gas hydrates occur in a wide variety of geologic settings and modes of occurrence. Tese include gas hydrate concentration, host lithology, distribution within the sediment matrix, burial depth, water depth, and many others. Te major controlling factor on where gas hydrate forms is lithology and availability of methane. Figure 8.27 from Boswell (2011) gives a schematic depiction


of the components of various methane hydrate systems. Examples A and B represent massive forms in hydrate-bearing marine clays. Example C shows a hydrate-bearing marine sand.


276


Examples D and E represent sea-floor mounds (outcrops) and hydrate-bearing clays (finely dispersed). Tree dominant types of gas hydrate accumulations can


be defined and distinguished based on the mode of fluid migration and gas hydrate concentration within the GHSZ (Milkov and Sassen, 2002). Te end-members are structural and stratigraphic accumulations, but combination accumulations controlled both by structures and stratigraphy may occur.


Structural accumulations: Structural gas hydrate accumulations occur in advective high fluid flux settings, where highly permeable fractured conduits like fault systems, mud volcanoes and other geological structures facilitate rapid fluid transport from depth into the GHSZ. Te gas hydrate concentration in the sediments is relatively high. Gas hydrate deposits associated with active faults and craters of deepwater mud volcanoes usually present high gas hydrate concentrations, with 30–50% of the pore space filled by hydrates. Te shallow seafloor consists typically of non-consolidated


silts and clays. Various types of gas hydrates may occur: layers of hydrates of thicknesses from millimetres to tens of centimetres, massive hydrate deposits, or hydrate outcrops (mounds) on the seafloor. Bottom-simulating reflectors (BSRs) are not common in


structural accumulations as they do not typically seal much gas below the gas hydrate layer. If present, they are patchy and displaced and they do not parallel the seafloor.


Stratigraphic accumulations: Stratigraphic gas hydrate accumulations generally occur in advective low fluid flux settings within passive margins in relatively coarse-grained sediments, from biogenic methane gas generated in situ, or gas which is slowly supplied from deeper in the subsurface. In stratigraphic accumulations, gas hydrate tends to


be highly dispersed through the GHSZ, and low hydrate concentrations are commonly measured with 1–12% of the pore space filled by hydrates. Te low hydrate concentration can be explained by the low permeability and porosity in clay-rich sediments, which hinder the mobility of both water and gas,


Johnson, 2011


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284  |  Page 285  |  Page 286  |  Page 287  |  Page 288  |  Page 289  |  Page 290  |  Page 291  |  Page 292  |  Page 293  |  Page 294  |  Page 295  |  Page 296  |  Page 297  |  Page 298  |  Page 299  |  Page 300  |  Page 301  |  Page 302  |  Page 303  |  Page 304  |  Page 305  |  Page 306  |  Page 307  |  Page 308  |  Page 309  |  Page 310  |  Page 311  |  Page 312  |  Page 313  |  Page 314  |  Page 315  |  Page 316  |  Page 317  |  Page 318  |  Page 319  |  Page 320  |  Page 321  |  Page 322  |  Page 323  |  Page 324  |  Page 325  |  Page 326  |  Page 327  |  Page 328  |  Page 329  |  Page 330  |  Page 331  |  Page 332  |  Page 333  |  Page 334  |  Page 335  |  Page 336  |  Page 337  |  Page 338  |  Page 339  |  Page 340  |  Page 341  |  Page 342  |  Page 343  |  Page 344  |  Page 345  |  Page 346  |  Page 347  |  Page 348  |  Page 349  |  Page 350  |  Page 351  |  Page 352