search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Downloaded from rsta.royalsocietypublishing.org on November 22, 2012


Conditions for Methane Hydrates in Seafloor and Permafrost Sediments a


2378


Te most common type of gas hydrate is methane hydrate and the conditions required for its stability can occur in marine sediments and in permafrost soil. Te phase diagrams (Figure 8.19) redrawn from Kvenvolden and Lorenson (2001) show the physical conditions (temperature and pressure) required for the stability of methane hydrate in the marine environment (top) and the permafrost environment (bottom). First, we discuss the marine setting


(Figure 8.19a). Salty oceanic water can be no colder than about −1.8°C before freezing. Assume that you are in a polar region, where the sea bottom temperature is 0°C. Furthermore, assume that the average temperature increase is 3°C per 100m sediment depth. Te figure then shows that methane hydrate cannot be stable at a water depth of 100m, but it may occur in a seafloor that is 400m below sea level. When drilling at a water depth of 400m, you can expect or hope to find a 370m-thick hydrate layer. Beneath this depth the temperatures will be too high for a formation of gas hydrate, so free gas and water is found. For a case of 1,000m water depth, the hydrate layer will be 600m thick. Obviously, the thickness of the hydrate zone will depend on the temperature gradient. In sediments that display a stronger increase in temperature, which can be the case, for example, at active continental margins (4–6°C per 100m depth), the hydrate zone will generally be thinner. Next, we look at the permafrost


M. Maslin et al. temperature (˚C) 0


–5 0 100 m


400 m 500


zone of GH stability


1000 1000 m 1500 2000


2376 b


gas hydrate (GH) = stable


Downloaded from rsta.royalsocietypublishing.org on November 22, 2012


http://www.gashydrate.de), showing the physical conditions (temperature and pressure) required for the stability of methane hydrate in a marine environment. Assuming a constant temperature of 0◦C, e.g. in polar regions, methane hydrate cannot be stable at a water depth of 100 m. It may occur in a seafloor, which is more than 400m below sea level. The thickness of the hydrate zone will depend on the temperature gradient. However, with an increasing depth below the seafloor, temperatures get too high for a formation of gas hydrate, so that one can find free gas and water. Given an average temperature increase of 3◦C per 100m sediment depth, when drilling at a water depth of 300 m, we can expect to find a 300m thick hydrate layer. At 1000m water depth, the layer will be 600m thick. If, however, sediments are characterized by a stronger increase in temperature, which can be the case, e.g. at active continental margins (4–6◦C per 100m depth), the hydrate zone will generally be thinner. Gas hydrate has been found in sediments up to 1100m below the seafloor.


M. Maslin et al. case 2


permafrost base at 750 m


–20 0 case 1


permafrost = 100 m


500


gas hydrate (GH) = unstable


–10


temperature (˚C) 0


10 20


permafrost base


= 100 m and for the East Siberian Arctic Seas by Shakhova et al. (2010). This is because


the land temperature can be below −20◦C, but salty oceanic water can be no colder than about −1.8◦C before freezing (Maslin & Thomas 2003). So, if sea level rises and floods permafrost areas, these will encounter a thermal shock of at


case 2


least 20◦C warming, which could lead to considerable break down of gas hydrates. Marine gas hydrate stability can also be affected by pressure changes. Increased


1000


permafrost = 750 m


setting (Figure 8.19b), where temperature gradients are considerably lower than in the ocean. Typically, the temperature can be expected to change by 1.3°C per 100m within the permafrost zone, and with 2°C per 100m in layers below the permafrost zone. Te ambient temperature and the thickness of the frozen layer are therefore of significant importance for the stability of gas hydrate. Consider the case where the base of the permafrost is at a depth of 100m or less. Te figure shows that the physical conditions will not be adequate for the formation of gas hydrate. If the permafrost base is, say, at 750m, the thickness of the gas hydrate zone is 900m. Since the stability of gas hydrates is related to relatively


1500


low temperatures and high pressure, any change in these two parameters can increase or decrease the stability of the gas hydrate. For example, if either the temperature is


272


permafrost base = 750 m


sea level will increase the hydrostatic pressure and will stabilize gas hydrates to a deeper depth, while lowering sea level will reduce the pressure on the sediment causing gas hydrates to become unstable (Paull & Dillon 2001; Paull et al. 2003). Another way of removing pressure from underlying sediments is by marine sediment failure. When the overlying sediment column collapse occurs and sediment moves down slope there is a reduction in weight of the sedimentary


zone of GH stability


1650 m


Phil. Trans. R. Soc. A (2010) 2000


gas hydrate (GH) = stable


Figure 8.19: Methane hydrates in seafloor sediments (a) and permafrost soils (b). Modified from Kvenvolden and Lorenson (2001)


case 1


permafrost base at 100 m


zone of GH stability


1600 m 5 10 15 20


gas hydrate (GH) = unstable


25 100 m 400 m 770 m 1000 m


drilling in 100 m water depth


drilling in 400 m water depth


drilling in 1000 m water depth


than in the ocean (figure 6). For example, the temperature can be expected to change by 1.3◦C per 100m within the permafrost zone, compared with 2◦C per 100m in layers below the permafrost zone. The ambient temperature and the thickness of the frozen layer are of paramount importance for the stability of gas hydrate. If the permafrost base is located at a depth of 100m or less (case 1), the physical conditions will not be adequate for a formation of gas hydrate. The situation is different in case 2, where the permafrost basis is located at greater depth. In polar regions, methane hydrate can occur at depths ranging from 150 to 1650 m.


increased or the pressure is reduced, the gas hydrate will change phase from a solid to a gas and liquid. Gas hydrates are not chemical compounds since the


is unlikely to be achieved in the short term for several reasons: (i) low concentration of gas in the sediment, even though every cubic metre of gas hydrate can produce 164m3 of methane, at atmospheric conditions, the highest concentrations of oceanic gas hydrates quoted are 17–20% by volume of the pore space, which equates to as little as 3 per cent sediment volume, (ii) the conditions for production are far more complicated than in permafrost regions, and (iii) the geohazards involved as well as the impact on the environment are difficult to assess. Small-scale production of methane from permafrost gas hydrate already occurs at the Messoyakh field, in western Siberia (Krason 2000) and has been trialled at Mallik, on the Mackenzie delta, northern Canada (Dallimore et al. 2005).


Phil. Trans. R. Soc. A (2010)


sequestered molecules are never bonded to the lattice. Te formation and decomposition of hydrates are first-order phase transitions. However, the detailed formation and decomposition mechanisms are still not well understood on a molecular level.


water depth (m) depth below ground (m)


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284  |  Page 285  |  Page 286  |  Page 287  |  Page 288  |  Page 289  |  Page 290  |  Page 291  |  Page 292  |  Page 293  |  Page 294  |  Page 295  |  Page 296  |  Page 297  |  Page 298  |  Page 299  |  Page 300  |  Page 301  |  Page 302  |  Page 303  |  Page 304  |  Page 305  |  Page 306  |  Page 307  |  Page 308  |  Page 309  |  Page 310  |  Page 311  |  Page 312  |  Page 313  |  Page 314  |  Page 315  |  Page 316  |  Page 317  |  Page 318  |  Page 319  |  Page 320  |  Page 321  |  Page 322  |  Page 323  |  Page 324  |  Page 325  |  Page 326  |  Page 327  |  Page 328  |  Page 329  |  Page 330  |  Page 331  |  Page 332  |  Page 333  |  Page 334  |  Page 335  |  Page 336  |  Page 337  |  Page 338  |  Page 339  |  Page 340  |  Page 341  |  Page 342  |  Page 343  |  Page 344  |  Page 345  |  Page 346  |  Page 347  |  Page 348  |  Page 349  |  Page 350  |  Page 351  |  Page 352