search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
that improved accuracy can be achieved by using three coupled gravimeters placed at the sea floor. Tis technical success led to a full field programme at the Troll field, in the North Sea. Another successful field example is a time- lapse gravity monitoring of an aquifer storage recovery project in Leyden, Colorado (Davis et al., 2005), essentially mapping water influx. Obviously, this technique is best suited for reservoirs where significant mass changes are likely to occur, such as water replacing gas. Shallow reservoirs are better suited than deep ones. Te size of the reservoir is a crucial parameter, and a given minimum size is required in order to obtain observable effects. For monitoring volcanic activity, gravimetric measurements might help to distinguish between fluid movements and tectonic activity within an active volcano. Since the breakthrough of active EM (Electromagnetic)


Figure 4.15: Schematic plot showing how 4D refraction analysis can be used to detect shallow gas leakage.


surveys (see Chapter 6) at the beginning of this millennium (Ellingsrud et al., 2002) this technique has mainly been used as an exploration tool, in order to discriminate between hydrocarbon-filled and water-filled rocks. Field tests have shown that such data are indeed repeatable, so there should definitely be a potential for using repeated EM surveys to monitor a producing reservoir. So far, frequencies as low as 0.25 Hz are being used (and even lower), which means that the spatial resolution will be limited. However, as a complementary tool to conventional 4D seismic, 4D EM might be very useful. In many 4D projects it is hard to quantify the amount of saturation changes taking place within the reservoir, and time-lapse EM studies might be used to constrain such quantitative estimates of the saturation changes. Another feature of the EM technique is that it is not very sensitive to pressure changes, so it may be a nice tool for separating between saturation and pressure changes. Tis is in contrast to conventional 4D seismic, since seismic data is sensitive to both pressure and saturation changes. By using the so-called interferometric synthetic aperture


radar principle obtained from orbiting satellites, an impressive accuracy of the distance to a specific location on the earth’s surface can be measured (see Chapter 1.6). By measuring the phase differences for a signal received from the same location for different calendar times, it is possible to measure the relative changes with even higher accuracy. By exploiting a sequence of satellite images, it is possible to monitor height changes versus time. Te satellites used for this purpose are orbiting the earth at a height of approximately 800 km. Several examples of monitoring movements of the surface


above a producing hydrocarbon reservoir have been reported. For reservoir monitoring purposes there are, of course, limitations on how much detailed information such images can provide for reservoir management. Te obvious link to the reservoir is to use geomechanical modelling to tie the


movements at the surface to subsurface movements. For seismic purposes, such a geomechanical approach can be used to obtain improved velocity models in a more sophisticated way; if you need to adjust your geomechanical model to obtain correspondence between observed surface subsidence and reservoir compaction, then this can be used to distinguish between overburden rocks with high and low stiffness for instance, which again can be translated into macro-variations of the overburden velocities. Te deeper the reservoir is, the less frequent will be the surface imprint of the reservoir changes, and hence this method cannot be used directly to identify small pockets of undrained hydrocarbons. However, it can be used as a complementary tool for time-lapse seismic since it can provide valuable information on the low frequency spatial signal of reservoir compaction. Seismic refraction methods are among the oldest methods


in seismic exploration. Te term refraction is not unique or precise. According to Sheriff (2002) it has two meanings, first to change direction (following Snell’s law) and second to involve head waves. Here we will use a relaxed interpretation, which means that the term includes head waves, diving waves and reflections close to critical angle. An attractive application of time-lapse refraction is to detect changes in shallow sediments. One such example is sketched in Figure 4.15, where an underground blowout (the same as shown in figures 4.2 and 4.3) causes gas to be trapped in a thin sand layer. In this case, the most robust 4D refraction attribute is the time shift. Tis will be further discussed in Section 4.3.


4.1.8 CO2 Monitoring Interest in CO2 injection, both for storage and as a tertiary


recovery method for increased hydrocarbon production, has grown significantly over the last decade. Statoil has stored approximately 0.9 million tons of CO2


- per year since 1997 in


the Utsira Formation at the Sleipner field, and several similar projects are now being launched worldwide. A key focus has been to develop geophysical methods to monitor the CO2


injection process, and particularly to try to quantify directly from geophysical data the volume injected. One way to improve our understanding of how the CO2


flows in a porous rock is to perform small-scale flooding experiments on long core samples. An example of such a flooding experiment and corresponding X-ray images for various flooding patterns is shown in Figure 4.16. By


163


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284  |  Page 285  |  Page 286  |  Page 287  |  Page 288  |  Page 289  |  Page 290  |  Page 291  |  Page 292  |  Page 293  |  Page 294  |  Page 295  |  Page 296  |  Page 297  |  Page 298  |  Page 299  |  Page 300  |  Page 301  |  Page 302  |  Page 303  |  Page 304  |  Page 305  |  Page 306  |  Page 307  |  Page 308  |  Page 309  |  Page 310  |  Page 311  |  Page 312  |  Page 313  |  Page 314  |  Page 315  |  Page 316  |  Page 317  |  Page 318  |  Page 319  |  Page 320  |  Page 321  |  Page 322  |  Page 323  |  Page 324  |  Page 325  |  Page 326  |  Page 327  |  Page 328  |  Page 329  |  Page 330  |  Page 331  |  Page 332  |  Page 333  |  Page 334  |  Page 335  |  Page 336  |  Page 337  |  Page 338  |  Page 339  |  Page 340  |  Page 341  |  Page 342  |  Page 343  |  Page 344  |  Page 345  |  Page 346  |  Page 347  |  Page 348  |  Page 349  |  Page 350  |  Page 351  |  Page 352