search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
were beginning to understand fundamental concepts about sound propagation, and underwater sound was being used to explore the ocean and its inhabitants. For example, shortly after WWI, the German scientist H. Lichte published a theory on the bending, or refraction, of sound waves in sea water. Building on work by Lord Rayleigh and Snell, Lichte predicted in 1919 that, just as light is refracted when it passes from one medium to another, sound waves are refracted when they encounter slight changes in temperature, salinity, and/or pressure. He also suggested that ocean currents and seasonal changes affect how sound moves in water. Scientists also discovered that low-frequency sound could


penetrate the seafloor, and that sound is reflected differently from individual layers in the subsurface sediment. For the first time, using sound, scientists could create a picture of what was beneath the seafloor. Tis provided clues to the history of the earth and a means for prospecting for oil and gas beneath the seafloor. Pioneering work was done by Maurice Ewing, A. Vine, B. Hersey, and S. (Bud) Knott. In 1936–37, Ewing, Vine, and Worzel produced one of the earliest seismic recorders designed to receive sound signals on the seafloor. Te need to generate high-energy, low-frequency sound that could penetrate deep into the seafloor led to the use of explosives and eventually to the development of airguns and high-voltage discharges (sparkers). Te development of ocean-bottom seismic stations


continued sporadically until the early 1960s when nuclear monitoring became important. Ten, new generations of seafloor seismometers resulted from Vela Uniform, a US project that was set up to develop seismic methods for detecting underground nuclear testing. In the seismic industry, Eivind Berg and co-workers were the first to develop four-component ocean-bottom sensors, more than 60 years after Ewing’s first trials.


3.6.2 Rapid Advancement


Te beginning of WWII marked the start of extensive research in underwater acoustics. Nearly all the established methods of studying submarine geology were found to have military applications, so progress in underwater acoustics, as in areas like radar and weapons, was shrouded in secrecy. At the end of the war, the U.S. National Defense Research Committee published a Summary Technical Report that included four volumes on research discoveries, but much of the work done during the war was not published until many years later, if at all. Te WWII effort focused on making careful measurements


of factors that affected the performance of echo ranging systems. Tings that affect the performance of sonar systems are described by what is now called the ‘sonar equation’, and includes the source level, sound spreading, sound absorption, reflection losses, ambient noise, and receiver characteristics. Te rapid advancement of underwater acoustics continued


after WWII, with wartime developments lead ing to large- scale investi gations of the ocean’s basins. Coupled with advancements in technology (e.g. com puters), underwater acoustics became an important tool for uses such as weather and climate research, underwater communication, and not least, seismic exploration.


118


Figure 3.43: Extract from Ibn Sahl’s treatise On Burning Mirrors and Lenses from 984 showing his discovery of the law of refraction. In the treatise, he set out his understanding of how curved mirrors and lenses bend and focus light.


3.6.3 Some Masters of Underwater Sound


Te word ‘science’ is derived from the Latin word ‘scientia’ which means ‘knowledge’. Here we would like to digress and present some major scientific theories and discoveries, spanning many years, which eventually led to developments in acoustics. As inventions and discoveries added to one another, technology and science advanced and evolved. It is important to realise that all successes require a long journey with many failures and failed experiments along the way. We hope that the little stories that follow inspire your curiosity and whet your appetite for discovery.


Aristotle (384–322 BC), the Greek philosopher, in his treatise On the Soul, wrote that “sound is a particular movement of air.” He understood that sound consisted of compressions and rarefactions of air which “falls upon and strikes the air which is next to it…” – a very good expression of the nature of wave motion. A notable quote, true on so many levels, is: “Knowing yourself is the beginning of all wisdom.”


Figure 3.42: Aristotle.


Ibn Sahl (940–1000) was a mathematician, physicist and optic engineer at the Abbasid Court in Baghdad. Under the Abbasid caliphate (750–1258), the focal point of Islamic political and cultural life shifted eastward from Syria to Iraq. In 762, Baghdad, the circular City of Peace, was founded as the new capital. Te first three centuries of Abbasid rule were a golden age when Baghdad was one of the cultural and commercial capitals of the Islamic world. In 1990 the Egyptian science


historian, Professor Roshdi Rashed, credited Ibn Sahl with developing the first law of refraction, also known as Snell’s Law, named after Willebrord Snellius (1580–1626). Ibn Sahl used the law of refraction to derive lens shapes that focus light without geometric aberrations.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284  |  Page 285  |  Page 286  |  Page 287  |  Page 288  |  Page 289  |  Page 290  |  Page 291  |  Page 292  |  Page 293  |  Page 294  |  Page 295  |  Page 296  |  Page 297  |  Page 298  |  Page 299  |  Page 300  |  Page 301  |  Page 302  |  Page 303  |  Page 304  |  Page 305  |  Page 306  |  Page 307  |  Page 308  |  Page 309  |  Page 310  |  Page 311  |  Page 312  |  Page 313  |  Page 314  |  Page 315  |  Page 316  |  Page 317  |  Page 318  |  Page 319  |  Page 320  |  Page 321  |  Page 322  |  Page 323  |  Page 324  |  Page 325  |  Page 326  |  Page 327  |  Page 328  |  Page 329  |  Page 330  |  Page 331  |  Page 332  |  Page 333  |  Page 334  |  Page 335  |  Page 336  |  Page 337  |  Page 338  |  Page 339  |  Page 340  |  Page 341  |  Page 342  |  Page 343  |  Page 344  |  Page 345  |  Page 346  |  Page 347  |  Page 348  |  Page 349  |  Page 350  |  Page 351  |  Page 352