search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
giving so-called PSSP reflections. For large angles of incidence, mode conversion from


P-wave to S-wave is quite efficient in ‘hard’ water-bottom environments. Te water-bottom shear velocity is the most critical parameter affecting the generation of observable PSSP reflections. Teir amplitudes can be comparable to normal P-wave reflections when the S-wave velocity is greater than one-third of the water-bottom P-wave velocity. In most areas, however, the sea-floor shear velocity is much lower. Terefore, the use of PSSP reflection data is not a viable technique to record high-quality shear-wave data in the marine environment. Other solutions were thus investigated. Unless shear waves were generated by source devices on the sea floor, the methods necessarily had to rely on mode conversion by reflection from P-wave to S-wave at reflectors in the subsurface, so-called PS-reflections. In the late 1980s, Eivind Berg at Statoil led the development


of the SUMIC (SUbsea seisMIC) system, whereby both shear and pressure waves were recorded by sensors implanted in the seabed. Te sensor system was called 4C, with one hydrophone to measure P-waves and a three-component geophone to measure the particle-velocity vector. In 1992, after the development of the prototype SUMIC


sensor array, several extensive field equipment tests were carried out. The data quality from the SUMIC sensor layouts was judged to be remarkably good, and demonstrated that SUMIC was a viable system for acquisition of high-fidelity 4C data. Te first full-scale SUMIC data acquisition of a multifold


2D seismic line was conducted in late 1993 over Statoil’s Tommeliten Alpha structure in Block 1/9 in the southern part of the Norwegian sector of the North Sea. Te principal objective of the survey was to demonstrate the potential of the SUMIC technique for imaging subsurface structures through and below gas chimneys (see Figure 2.19). Te chosen exploration target had a reservoir which lay


cable hydrophone


connector


geophone housing


spike 30 cm


Figure 2.18: The original SUMIC sensor used in the 1993 Tommeliten 2D-4C survey. It consists of a 30cm- long, 6cm-diameter ‘spike’ which was planted into the sea bottom by an ROV (remotely operated vehicle) to achieve good coupling. Above the spike is the geophone housing, approximately 40 cm long. On the top left is the hydrophone housing. The top right device is a cable connector. An array of 16 SUMIC sensors was used in the acquisition. During the Tommeliten survey, 375 common receiver gathers were recorded. The ROV crew took approximately half an hour to plant each SUMIC detector (see Figure 2.14).


6 cm


beneath gas rising in a chimney within the overlying shales. Previous conventional seismic surveys, which rely on P-wave propagation only, produced unusable images in some regions because of the distortion and misfocusing introduced as the P-waves passed through the gas chimney. A small percentage gas saturation in the chimney introduces strong attenuation and heavily distorts the P-ray paths. Because shear waves are much less affected by fluids


than compressional waves, it was expected that the 4C technology would be suited to ‘seeing through’ the distorting gas chimney, enabling a reliable image of the target to be produced from shear waves. A continuous and regular 2D-4C profile of 12 km length passing over two wells was acquired in late 1993. In general, the quality of the 4C data was excellent at all locations along the line as the sea bottom, geological conditions, and water depth varied. Te processed PS-wave time section showed a good-quality image of the


Figure 2.19: (a) The structure of the Tommeliten Alpha structure is obscured by escaping gas (gas chimney) on the conventional pressure wave section. The top of the structure over a horizontal distance of 3 km between well 1/9-1 (left vertical line) and well 1/9-3R (right vertical line) cannot be mapped due to the gaseous overburden. The reflector disruption is so severe that no stratigraphic or structural interpretation can be made between the wells. The targets of interest are the reflections between 3 and 3.5s in the Top Ekofisk chalk interval and possible Jurassic prospects below 3.7s in the mid-part of the section. In the flank areas, the seismic data quality is considered to be very good. The PS-mode-converted shear-wave section (b) considerably reduces the area of uncertain structural interpretation, especially in the deeper part of the section (for the Top Ekofisk Fm and the Top Lower Cretaceous Fm). The reservoir zone lies between 5.5 and 6s on the PS-wave section, and the faulted pattern can be partly followed across the crest of the dome. (Adapted from Ikelle and Amundsen, 2005.)


P-data Top reservoir Gas chimney ? a (a) 1/9 – 1 3 km 1/9 – 3R b 3 km 67 PS-data


Statoil


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284  |  Page 285  |  Page 286  |  Page 287  |  Page 288  |  Page 289  |  Page 290  |  Page 291  |  Page 292  |  Page 293  |  Page 294  |  Page 295  |  Page 296  |  Page 297  |  Page 298  |  Page 299  |  Page 300  |  Page 301  |  Page 302  |  Page 303  |  Page 304  |  Page 305  |  Page 306  |  Page 307  |  Page 308  |  Page 309  |  Page 310  |  Page 311  |  Page 312  |  Page 313  |  Page 314  |  Page 315  |  Page 316  |  Page 317  |  Page 318  |  Page 319  |  Page 320  |  Page 321  |  Page 322  |  Page 323  |  Page 324  |  Page 325  |  Page 326  |  Page 327  |  Page 328  |  Page 329  |  Page 330  |  Page 331  |  Page 332  |  Page 333  |  Page 334  |  Page 335  |  Page 336  |  Page 337  |  Page 338  |  Page 339  |  Page 340  |  Page 341  |  Page 342  |  Page 343  |  Page 344  |  Page 345  |  Page 346  |  Page 347  |  Page 348  |  Page 349  |  Page 350  |  Page 351  |  Page 352