search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Te ‘eigenfunction solutions’ of the wave equation,


Z(z) = sin(γz), must be zero at depths z=0 and z=D, since the pressure here is zero. Te requirement Z(D)=0 gives the ‘modal equation’ for the idealised waveguide, γm or γm


D = mπ,


‘mode number’. Te γm = √k2


–γm2 with k2


= mπ/D, where m is an integer which designates the are known as the eigenvalues. Te


values of the horizontal component of the wavenumber are Km


≥ γm2 . In the idealised waveguide, the depth dependent eigenf uctions are simply Zm modes.


3.5.2 Normal Modes in the Ocean Tere are only a few relatively simple oceanic waveguides which allow us to obtain a closed analytical form of the solution describing sound propagation at long distances from the source. Pekeris (1948) is regarded as one of the pioneers in this field (see box below). Consider a water layer with thickness D and water speed c with source at depth zs receiver at depth z. Te pressure is effectively zero at the sea


and (z) = sin(mπz/D),


m=1,2,3,… Te sound pressure is the sum of the pressures in the


surface; the reflection coefficient is R=-1. It is well known that for plane wave incidence on the sea floor beyond the critical angle, there is a perfect reflection with an accompanying phase shift. Tis reflection can be represented with an equivalent reflection having R=-1 at a virtual pressure release interface displaced a distance below the sea floor. Terefore, when we study long-range sound propagation in a water layer over a real sediment, the simplest waveguide is the homogeneous water layer that has interfaces with vanishing pressure at the upper and lower boundaries. Te sound pressure is the sum of the pressures in the modes and given as (Jensen et al., 1994; Medwin, 2005):


where A depends on the source power, ρ is the ambient


density, and the summation is over all allowed modes m=1,…,M with real propagation wavenumbers; M increases with increasing frequency; am


is the modal excitation. Tis


normal mode expansion of the field in the waveguide is referred to as the Pekeris model and is useful to understand


Normal Modes – the Invention of Pekeris


Te normal modes concept was first introduced by Pekeris in 1948 for application of acoustic sound propagation caused by an explosive point source in shallow waters. It should be noted that Pekeris published a paper on normal modes in the theory of microwave propagation in 1946. A comprehensive description of normal modes generated within a layered half space is given in the well known textbook written by Ewing, Jardetsky and Press in 1957. Figure 3.33a is modified from their book and shows a liquid half space over an infinite liquid layer. It is possible to derive approximations for the recorded wave field at a large horizontal distance from the source, and the detailed derivation of this can be found in their book. In the analysis of the seismic data recorded at a long distance from a seismic vessel, the period equation is key to understanding the concept of normal modes:


c tankH c


1 2


2 1 =


1 2


1


1 2


2 c 1 2


2 2


Here c is the phase velocity, k is the wavenumber, H is the water depth, and α1 layer and α2


the first layer below the seabed and ρ1


denotes the P-wave velocity of the water and ρ2


denote densities for the corresponding layers, respectively. From this equation it is possible to determine the phase velocity (c) as a function of frequency for each mode. Since the left-hand side of equation (1) is periodic, we will get multiple solutions, leading to the harmonic (or normal) modes. Once the phase velocity for each mode is determined, it is possible to estimate the group velocity by taking the


derivative of the frequency with respect to the wave number k. An example of phase velocities (c) and corresponding group velocities are shown in Figure 3.33b. In the book of


112 (1)


Ewing there is no explicit formula given for the group velocity. It is shown by Landrø and Hatchell that the group velocity (U) can be derived directly from equation (1): 1


2 U c = c 1+ where 2 1Hk 1 = c


1 2


1 2 2 1 + 2 1 2 1


3 2


and 2 1


2 2


cos kH 1 2 2 = 1 c 2


2 2


From equation (2) we see that the group velocity approaches α₁ when c →α₁ and α₂ when c →α₂, as expected. From


Figure 3.33b we see that the phase velocity for each mode starts at the velocity for the second layer and asymptotically approaches the water velocity for higher frequencies. Te asymptotic behaviour is observed for the group velocity, apart from the fact that the group velocity reaches a local minimum for a given frequency for each mode. If the second layer is a solid layer, the shear velocity for


layer 2 (β₂) will enter into the period equation, as derived by Press and Ewing in 1950 (see Ewing et al., 1957 for a comprehensive derivation):


c tankH c


1 2


4 2 1 =


2 2 4


1c 1


1 2


2 c 1 2


2 2


Press and Ewing used the integral technique introduced


by Lamb in 1904 to derive approximate expressions for the wavefield at an arbitrary point in the water, including the effect of a solid layer below the seabed. Figure 3.33c shows an example of normal modes recorded by the permanent receiver array that was installed at the Valhall field in 2003, offshore Norway. Five modes can be identified from this figure, and the group velocity as given by equation (2) fits reasonably well to the observed data.


4 1 c 2


2 2


1 c


2 2


2 (2 c


2 2


2 ) 2 (3) (2)


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284  |  Page 285  |  Page 286  |  Page 287  |  Page 288  |  Page 289  |  Page 290  |  Page 291  |  Page 292  |  Page 293  |  Page 294  |  Page 295  |  Page 296  |  Page 297  |  Page 298  |  Page 299  |  Page 300  |  Page 301  |  Page 302  |  Page 303  |  Page 304  |  Page 305  |  Page 306  |  Page 307  |  Page 308  |  Page 309  |  Page 310  |  Page 311  |  Page 312  |  Page 313  |  Page 314  |  Page 315  |  Page 316  |  Page 317  |  Page 318  |  Page 319  |  Page 320  |  Page 321  |  Page 322  |  Page 323  |  Page 324  |  Page 325  |  Page 326  |  Page 327  |  Page 328  |  Page 329  |  Page 330  |  Page 331  |  Page 332  |  Page 333  |  Page 334  |  Page 335  |  Page 336  |  Page 337  |  Page 338  |  Page 339  |  Page 340  |  Page 341  |  Page 342  |  Page 343  |  Page 344  |  Page 345  |  Page 346  |  Page 347  |  Page 348  |  Page 349  |  Page 350  |  Page 351  |  Page 352