search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Te core of the fibre is only about


8–10 microns. Tis is the standard single-mode fibre used for long-range communication like telephony and cable TV. Te optical system also includes


a transmitter that converts an electric signal into light and sends it down the fibre. Te transmitter is a laser diode designed to emit light pulses at wavelengths around 1,550 nanometres (nm). Te attenuation of light in an optical fibre is mainly caused


Figure 4.35: The optical fibre is composed of an inner core, a cladding and an outer buffer.


by scattering resulting from minor imperfections in the glass. Tis attenuation is strongly dependent on the wavelength of the light. By choosing wavelengths corresponding to low attenuation (1,550 nm), it is possible to transmit optical signals over tens of kilometres with little loss. Typical losses for single- mode fibres are of the order of 0.2 decibels (dB) per kilometre. (dB is measured as 10 times the logarithm of the output power divided by the input power.)


4.4.3 Fibre Optic Hydrophones and Geophones


Te sensors used with fibre optics are hydrophones and three-component accelerometers. A fibre optic hydrophone is composed of a cylinder of a plastic-like material, where the fibre is coiled around the cylinder. When a pressure wave is passing the cylinder, the length of the coil will be slightly changed, and this displacement can be measured with high resolution as a shift in reflection time or phase delay between two identical Bragg gratings situated on opposite sides of the hydrophone. Te wavelength of the incident light must be equal to the Bragg wavelength. In this way the hydrophone converts pressure


The Bragg Grating


A fibre Bragg grating (FBG) acts as a light reflector with maximum reflection at a very specific wavelength, while other wavelengths are transmitted. Te Bragg grating is ‘written’ into a short segment (about 1 cm) of the fibre by using an intensive ultraviolet laser that alters the refractive index of the fibre core. Te core is photosensitive with exposure to UV light, and its change in refractive index is a function of the intensity and duration of the exposure. Te grating will typically have a sinusoidal refractive


index variation. Te reflected wavelength λ, called the Bragg wavelength, is defined by the relationship λ=2nΛ, where n=(n3


+n2 )/2 is the average refractive index of the


grating in the fibre core and Λ is the grating period. Using an average refractive index of 1.55 and grating period of 500 nm, the grating reflects at λ=1,550 nm. Te reflection strength Rλ (peak reflectivity) is determined by the grating length L=NΛ, where N is the number of periodic variations, and the grating strength n3


-n2 . 175 Te refractive index is a measure for how much the speed


of light is reduced inside the fibre relative to a vacuum. For example, the glass core has a refractive index of 1.5, which means that in the core, light travels at 1/1.5 = 0.67 times the speed of light in a vacuum. Tis is fast – 200,000,000 metres per second. Note: Te refractive index of water is 1.33, corresponding


to a velocity of 225,000,000 m/s. If particles in water are accelerated to a velocity above this they will radiate, an effect called Cerenkov radiation. Cerenkov received the Nobel prize in Physics in 1958 for describing this intensive ‘blue glow’ observed in nuclear reactors. Particles travelling faster than the speed in vacuum are referred to as tachyons – hypothetical particles introduced by Sommerfeld.


Figure 4.37: Sketch of Bragg grated fibre. 0.8 0.6 OH absorption 0.4 Rayleigh scattering 0.2 IR absorption 1100 1200 1300 1400 1500 Wavelength (nm) Figure 4.36: The attenuation in the fibre is a minimum of about 1,550 nm.


waves into a change in the fibre length. Te change in the length is proportional to the amplitude of the seismic wave. Te fibre optic accelerometer similarly modulates the fibre


length as the sensor is exposed to acceleration. To achieve a directional measurement, a special design utilising two half-spheres at each side of a rod ensures that the coil length is changed only for a directional signal. If the seismic wave hits the optic accelerometer perpendicular to the rod, the coil length will not change. When the wave hits along the rod, the coil length will change, and a non-zero seismic signal is measured (Figure 4.37). An advantage of fibres is that a number of sensors can


be multiplexed on one fibre. In the Optowave system this is implemented through a combination of time division multiplexing and wavelength division multiplexing. All sensors within one 4C seismic station are multiplexed using time


1600 1700


Lasse Amundsen Loss (dB/km)


Lasse Amundsen and Martin Landrø


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284  |  Page 285  |  Page 286  |  Page 287  |  Page 288  |  Page 289  |  Page 290  |  Page 291  |  Page 292  |  Page 293  |  Page 294  |  Page 295  |  Page 296  |  Page 297  |  Page 298  |  Page 299  |  Page 300  |  Page 301  |  Page 302  |  Page 303  |  Page 304  |  Page 305  |  Page 306  |  Page 307  |  Page 308  |  Page 309  |  Page 310  |  Page 311  |  Page 312  |  Page 313  |  Page 314  |  Page 315  |  Page 316  |  Page 317  |  Page 318  |  Page 319  |  Page 320  |  Page 321  |  Page 322  |  Page 323  |  Page 324  |  Page 325  |  Page 326  |  Page 327  |  Page 328  |  Page 329  |  Page 330  |  Page 331  |  Page 332  |  Page 333  |  Page 334  |  Page 335  |  Page 336  |  Page 337  |  Page 338  |  Page 339  |  Page 340  |  Page 341  |  Page 342  |  Page 343  |  Page 344  |  Page 345  |  Page 346  |  Page 347  |  Page 348  |  Page 349  |  Page 350  |  Page 351  |  Page 352