search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
location. And finally, since Jupiter travelled to a much more distant position than it had been before, where lots of icy objects lived, the massive planet deflected some of these icy objects toward the sun and into the asteroid belt. As a result, the asteroid belt contains rocky objects from the inner solar system and icy objects from the outer solar system, all in the position where we see them in the belt today.


9.2.4 Our Moon and its Violent Origin


Te disc of the full moon has inspired story-telling for centuries. Some see the lunar maria – the large, dark, basaltic plains formed by ancient volcanic eruptions – as the shape of a person’s face, making up stories about the mysterious “man in the moon”. Te plains were dubbed maria, which is Latin for “seas”, by early astronomers who mistook them for actual seas. Others, especially children, compare the Moon’s heavily cratered highlands to cheese and dream of an entire sphere made of that delicious product. In Greek-Roman mythology, Sun and Moon are represented as male (Helios/Sol) and female (Selene/Luna).


9.2.4.1 How Did the Moon Form?


Figure 9.33: During its flight in 1992, the Galileo spacecraft returned separate images of the Earth and Moon, here combined to generate this view. We see a partial view of the Earth centred on the Pacific Ocean about latitude 20°S, with the west coast of South America and the Caribbean. The swirling white cloud patterns indicate storms in the south-east Pacific. The distinct bright ray crater at the bottom of the Moon is the Tycho impact basin. The dark areas are lava rock-filled impact basins.


formed later than Jupiter, also got pulled in and eventually caught up with Jupiter at about the current orbital distance of Mars. When the two planets came close, their fates became linked. Locked in a gravity dance, their sun-bound death spiral came to a halt and the planet pair turned and moved away from the sun. Tey kept migrating outward until the disc ran out of gas and the planets were stranded somewhere not too far from their current orbits. We refer to Jupiter’s path as the Grand Tack, since this


change in Jupiter’s direction is like the course that a sailing boat takes when it tacks around a buoy. Jupiter’s wild migration now explains the puzzles. As


Jupiter migrated inwards, it pushed most of the rocky material inwards. Dust and material that was meant to make Mars the size of Earth and Venus was swept away. Jupiter completely cleared out the Mars zone, Mars got too little material, and ended with a tenth the mass of Earth. Earth and Venus formed within a region with lots of rocky material. Everything Jupiter met on its way was strongly affected.


Starting its migration inwards and passing the asteroid belt which at the time consisted of a loose collection of rocky objects, the Grand Tack model indicates that Jupiter pushed the whole belt farther out. Essentially, Jupiter deflected the objects, and switched places with the asteroid belt. Much later, when Jupiter turned and moved away from the sun, the big gas planet nudged the asteroid belt back inward to its present


316


One speculative theory claims that the Earth used its gravity to capture the Moon from Venus, giving our planet its big satellite. Te leading theory for the Moon’s origin, however, is the Giant Impact Hypothesis, first proposed in the 1970s. Tis suggests that the Moon was formed about 30–50 million years after the origin of the solar system from debris thrown into orbit by a violent cosmic crash between the just-forming proto-Earth and a Mars-size planetoid called Teia. Tis orbiting debris, primarily derived from Teia, later coagulated to form a single object: the Moon. It is still a puzzle as to why the composition of the Earth


and the Moon is so alike. Te Moon’s bulk density and composition is similar to that of the Earth’s mantle and it has been established that the composition of the oxygen isotopes of the Moon and the Earth is identical. A study by Mastrobuono- Battisti et al. (2015) suggests the compositional resemblance stems from the similarity between Teia and Earth. Tey are said to have grown up together in the same ‘neighbourhood’ and therefore collected similar material. Living in a similar environment also led them eventually to collide. However, Touboul et al. (2015) suggest that Teia did not


have the same composition as Earth. Instead, they believe that the material from Teia and Earth mixed so thoroughly that the Earth’s mantle and the moon each received a similar portion, explaining their resemblance.


9.2.4.2 What If the Moon Did Not Exist?


Te Earth would be quite a different place if the Moon did not exist. At the time of the Moon’s formation the Earth rotated much faster than it does today, so a day on early Earth was only a few hours long. Since then, the Earth has been slowing its rotation due the Moon’s gravitational influence, which also produces the ocean tides. Tere is a little bit of friction between the tides and the rotating Earth, causing the rotation to slow down just a little. As Earth slows, it lets the Moon creep away. Today, the Moon is slowing down the rotation of the Earth by about 15 microseconds every year, gradually


NASA/JPL/USGS


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284  |  Page 285  |  Page 286  |  Page 287  |  Page 288  |  Page 289  |  Page 290  |  Page 291  |  Page 292  |  Page 293  |  Page 294  |  Page 295  |  Page 296  |  Page 297  |  Page 298  |  Page 299  |  Page 300  |  Page 301  |  Page 302  |  Page 303  |  Page 304  |  Page 305  |  Page 306  |  Page 307  |  Page 308  |  Page 309  |  Page 310  |  Page 311  |  Page 312  |  Page 313  |  Page 314  |  Page 315  |  Page 316  |  Page 317  |  Page 318  |  Page 319  |  Page 320  |  Page 321  |  Page 322  |  Page 323  |  Page 324  |  Page 325  |  Page 326  |  Page 327  |  Page 328  |  Page 329  |  Page 330  |  Page 331  |  Page 332  |  Page 333  |  Page 334  |  Page 335  |  Page 336  |  Page 337  |  Page 338  |  Page 339  |  Page 340  |  Page 341  |  Page 342  |  Page 343  |  Page 344  |  Page 345  |  Page 346  |  Page 347  |  Page 348  |  Page 349  |  Page 350  |  Page 351  |  Page 352