search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Te measurements show that the fish


in the survey area were exposed to varying levels of sound pressures, depending on their distance from the seismic vessel. At 30 km distance from a fish shoal the sound pressure level was 140 dB, which is well above the hearing threshold of cod but still below their threshold for behavioural change. Te highest sound level measured at


the hydrophone rig was 191 dB, when the vessel passed at a distance of 500m. At this level, fish at this distance would be expected to react strongly if they have not already chosen to swim away, with known reactions including increased swimming activity, startle responses, changes in schooling behaviour, and vertical movement. Sound measurements in the area of line


200 190 180 170 160 150 140 130 120


21:00 00:00 03:00 06:00 Time


catch of haddock showed a sound pressure level of maximum 155 dB @ 10 km. See Figure 3.89b. Fish can hear this level but it will probably not induce behavioural changes. For several weeks the seismic vessel operated many kilometres away from the haddock lines, so the fish were first exposed to low sound levels over a long time. Ten the vessels approached the catch area, and the sound level gradually increased. Fish are known to adjust to external influences. For


instance, a novel sound in their environment, like seismic, may initially be distracting, but after becoming accustomed to it their response to it will diminish. Tis decrease in response to a stimulus after repeated presentations is called habituation. Habituation may have led to the higher response levels for


haddock. However, lower line catch rates for haddock as the seismic vessel approached the lines indicate that the haddock reacted to the seismic sound at closer distances.


3.12.4 Effect of Seismic on Fisheries


Te survey clearly indicated that fish react to the sound from the seismic guns by changing their behaviour, resulting in increased catches for some species and smaller catches for others. It appears that pollock and parts of the schools of saithe migrated out of the area, while other species seemed to remain. Analyses of the stomach contents in the fish caught did not reveal changes attributable to the seismic survey. Neither were any changes in the distribution of plankton proven during the seismic data acquisition. Te most probable explanation for both increased and


reduced catches for the different species and types of fishing gear is that the sound from the airguns put the fish under some stress, causing increased swimming activity. Tis would, for example, explain why Greenland halibut, redfish and ling were more likely to go into the net, while long line catches of the same species declined. However, the results of this study, showing few negative effects


of seismic shooting, deviate from the results of previous studies, which demonstrated considerable reductions in the catch rates for trawl and line fishing. In research from the North Cape Bank in the Barents Sea in 1992, reported in Engås et al. (1996, 2002),


144


Figure 3.89b: Sound pressure level (peak value) at a hydrophone rig deployed at 73m depth as function of airgun distance. The closest distance is around 10.1 km when the maximum sound pressure level was 155 dB re 1 µPa.


the seismic acquisition activity was concentrated within a smaller area, 81 km2 one 5,012 in3


. Te vessel was equipped with two streamers and seismic source. Tere were 36 sail lines, around


18.5 km long, with a separation of 125m, compared to 450m for the Vesterålen survey, entailing a stronger and more continuous sound impact on the fish than in the Barents Sea study. In terms of the number of shots per square kilometre per hour, the sound influence was approximately 19 times higher in the 1992 survey than in the Vesterålen survey (Løkkeborg et al., 2010). Seismic has been acquired offshore Norway for almost 60


years. Te technology has become more sophisticated since the 1990s, largely as a result of the number of streamers that seismic vessels can tow. A high number of streamers implies that the sail lines have larger spacing; thereby, the number of shots in the area is reduced. Tis is positive for fish and fisheries. In addition, the sensor systems in the seismic streamers are gradually being


Figure 3.90: Firemore Bay on the coast of north-west Scotland was the site of a 2001 study on the impact of seismic shooting on fish.


09:00 12:00


70 60 50 40 30 20 10 0


15:00


Pressure amplitude (dB rel. 1µPa)


Løkkeborg et al (2010) Distance from source (km)


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284  |  Page 285  |  Page 286  |  Page 287  |  Page 288  |  Page 289  |  Page 290  |  Page 291  |  Page 292  |  Page 293  |  Page 294  |  Page 295  |  Page 296  |  Page 297  |  Page 298  |  Page 299  |  Page 300  |  Page 301  |  Page 302  |  Page 303  |  Page 304  |  Page 305  |  Page 306  |  Page 307  |  Page 308  |  Page 309  |  Page 310  |  Page 311  |  Page 312  |  Page 313  |  Page 314  |  Page 315  |  Page 316  |  Page 317  |  Page 318  |  Page 319  |  Page 320  |  Page 321  |  Page 322  |  Page 323  |  Page 324  |  Page 325  |  Page 326  |  Page 327  |  Page 328  |  Page 329  |  Page 330  |  Page 331  |  Page 332  |  Page 333  |  Page 334  |  Page 335  |  Page 336  |  Page 337  |  Page 338  |  Page 339  |  Page 340  |  Page 341  |  Page 342  |  Page 343  |  Page 344  |  Page 345  |  Page 346  |  Page 347  |  Page 348  |  Page 349  |  Page 350  |  Page 351  |  Page 352