3.2 Airgun Arrays for Non-Experts
An expert is someone who knows some of the worst mistakes that can be made in his subject, and how to avoid them. Werner Heisenberg (1901–1976)
3.2.1 Source Directivity
Figure 3.12 shows a seismic vessel with two airgun arrays towed 355m behind (measured from the navigation reference point). An example of an airgun array configuration with 28 active guns in three strings is shown in plan view in Figure 3.13a. Te individual gun volumes in this example range from 20 in3 250 in3
(0.3 l) to (4.1 l). Te total
volume is 3,090 in3 (50.7 l). Te array contains a number of ‘cluster guns’, where two guns sit so close together that their air bubbles coalesce after the guns have fired. Cluster guns produce sound more efficiently
than a single large gun with the same volume as the cluster. Te source array dimension is 15m (inline) x 20m (cross-
line). Inline and cross-line refer to the direction the ship sails. Te source signature from the array at 5m depth is displayed
in Figure 3.13b. Observe that the bubble oscillations are strongly damped. Te primary-to-bubble ratio is PBR=35.6. Te amplitude spectrum is shown in Figure 3.13c. Te notches at frequencies 0, 150, 300 and 450 Hz are caused by the source ghost. Note that the primary-to-bubble ratio is frequency dependent. In seismic surveying, airgun arrays are designed to direct
a large proportion of the sound energy downwards. Despite this downward-focusing effect, relatively strong sound pulses will propagate in all directions. Te radiation from an array will depend on the angle from the vertical, so that the radiated source signature is directional. Tis effect is called directivity. Each array has its own specific radiation pattern. Tis
pattern, which will be different for different frequencies, varies relatively slowly from low to high frequencies. Te radiation pattern will also be different for different array tow depths. For the gun array in Figure 3.13a, source directivity can
be modelled. Figure 3.14 shows the radiation pattern for frequencies 0–150 Hz, in in-line (top) and cross-line (bottom) directions. Vertical direction is 0 degrees. At the edge of each circle 90 degrees corresponds to horizontally propagating energy. Observe that the radiation pattern is concentrated
100
Figure 3.12: Seismic vessel with two seismic sources (two airgun arrays) and 12 hydrophone cables equipped for a 3D investigation.
downwards, and that the source pulse gets attenuated for angles that differ from the vertical. Te amplitude levels emitted horizontally tend to be 18–29 dB lower than the vertical. Note that the sound produced by the array is not distributed evenly across the frequency spectrum. Te amplitude is largest in the 20–100 Hz interval but some
energy will be present up to 500–1,000 Hz. Te high-frequency components are weak when compared to the low-frequency components, but strong when compared to ambient noise levels.
3.2.2 The Effect of the Water Layer and Seafloor
Te seismic signal from the airgun array will be affected by the physical properties of the water layer and the seafloor. Te sound travelling with small to moderate angles to the
vertical axis will reflect at and refract into the water bottom. Te reflection strength is given by the reflection coefficient for the interface between the water layer and the layered bottom. For small angles, the reflection coefficient is small, typically 0.2, so that most (~80%) of the sound enters the subsurface. However, sound hitting the seafloor at angles larger than a
critical angle to the vertical, determined by the ratio of sound velocity in water and sea bottom, will be reflected back into the water layer (Figure 3.15). Te water layer, bounded above by the sea surface and below by the water bottom, then forms
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148 |
Page 149 |
Page 150 |
Page 151 |
Page 152 |
Page 153 |
Page 154 |
Page 155 |
Page 156 |
Page 157 |
Page 158 |
Page 159 |
Page 160 |
Page 161 |
Page 162 |
Page 163 |
Page 164 |
Page 165 |
Page 166 |
Page 167 |
Page 168 |
Page 169 |
Page 170 |
Page 171 |
Page 172 |
Page 173 |
Page 174 |
Page 175 |
Page 176 |
Page 177 |
Page 178 |
Page 179 |
Page 180 |
Page 181 |
Page 182 |
Page 183 |
Page 184 |
Page 185 |
Page 186 |
Page 187 |
Page 188 |
Page 189 |
Page 190 |
Page 191 |
Page 192 |
Page 193 |
Page 194 |
Page 195 |
Page 196 |
Page 197 |
Page 198 |
Page 199 |
Page 200 |
Page 201 |
Page 202 |
Page 203 |
Page 204 |
Page 205 |
Page 206 |
Page 207 |
Page 208 |
Page 209 |
Page 210 |
Page 211 |
Page 212 |
Page 213 |
Page 214 |
Page 215 |
Page 216 |
Page 217 |
Page 218 |
Page 219 |
Page 220 |
Page 221 |
Page 222 |
Page 223 |
Page 224 |
Page 225 |
Page 226 |
Page 227 |
Page 228 |
Page 229 |
Page 230 |
Page 231 |
Page 232 |
Page 233 |
Page 234 |
Page 235 |
Page 236 |
Page 237 |
Page 238 |
Page 239 |
Page 240 |
Page 241 |
Page 242 |
Page 243 |
Page 244 |
Page 245 |
Page 246 |
Page 247 |
Page 248 |
Page 249 |
Page 250 |
Page 251 |
Page 252 |
Page 253 |
Page 254 |
Page 255 |
Page 256 |
Page 257 |
Page 258 |
Page 259 |
Page 260 |
Page 261 |
Page 262 |
Page 263 |
Page 264 |
Page 265 |
Page 266 |
Page 267 |
Page 268 |
Page 269 |
Page 270 |
Page 271 |
Page 272 |
Page 273 |
Page 274 |
Page 275 |
Page 276 |
Page 277 |
Page 278 |
Page 279 |
Page 280 |
Page 281 |
Page 282 |
Page 283 |
Page 284 |
Page 285 |
Page 286 |
Page 287 |
Page 288 |
Page 289 |
Page 290 |
Page 291 |
Page 292 |
Page 293 |
Page 294 |
Page 295 |
Page 296 |
Page 297 |
Page 298 |
Page 299 |
Page 300 |
Page 301 |
Page 302 |
Page 303 |
Page 304 |
Page 305 |
Page 306 |
Page 307 |
Page 308 |
Page 309 |
Page 310 |
Page 311 |
Page 312 |
Page 313 |
Page 314 |
Page 315 |
Page 316 |
Page 317 |
Page 318 |
Page 319 |
Page 320 |
Page 321 |
Page 322 |
Page 323 |
Page 324 |
Page 325 |
Page 326 |
Page 327 |
Page 328 |
Page 329 |
Page 330 |
Page 331 |
Page 332 |
Page 333 |
Page 334 |
Page 335 |
Page 336 |
Page 337 |
Page 338 |
Page 339 |
Page 340 |
Page 341 |
Page 342 |
Page 343 |
Page 344 |
Page 345 |
Page 346 |
Page 347 |
Page 348 |
Page 349 |
Page 350 |
Page 351 |
Page 352