search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Traditionally, studies of hearing have used behavioural or


electrophysiological methods. Te qualitative behavioural methods are based on conditioning the fish with acoustic signals in conjunction with either reward (food) or punishment (electric shocks). Te electrophysiological methods used to involve inserting electrodes into either the midbrain or auditory end organs of the test fish to record neuronal activities in response to acoustic signals. Tis requires invasive surgery. In the late 1990s, a non-invasive auditory brainstem response (ABR) method where electrodes are placed on the skin of the fish’s head was developed to obtain audiograms of fish, similar to those we described in Section 3.9 to test marine mammals. It has now become a standard method for research into fish auditory physiology. Fish lacking the swim bladder or having a swim bladder


that is not in close proximity or mechanically connected to the inner ear are sensitive mainly to sound acceleration. Teir audiogram shows a sharp upper frequency limit for hearing at 200–300 Hz. Tis response is typical for fish species like flounders, flatfish, demersal fish (such as bullheads and sculpins), wolf fish, mackerel, salmonids, redfish and eels. Te European plaice is known to be significantly sound sensitive into the infrasonic band (less than 20 Hz) and this probably


Sound in Water Any sound source in water produces both oscillations of water molecules – particle motion – and pressure variations – sound pressure. Particle motion can be either described as acoustic displacement, particle velocity, or particle acceleration. Sound pressure is the parameter with which most are


familiar, since it determines the ‘loudness’ of a sound to humans and mammals. Far away from a sound source, in the far-field of the source, the ratio of sound particle


Figure 3.86: The cod has been shown to detect sound pressure at the higher frequencies of its hearing range. At low frequencies, below about 100 Hz, however, the cod is particle motion sensitive. Its swim bladder appears to serve as an accessory hearing structure: oscillations are transmitted through the surrounding tissue to the inner ear, even though there is no apparent specialised anatomical link to the inner ear. The cod possibly detects ultrasound. Astrup and Møhl (1993) indicate that cod has ultrasound thresholds of 185 to 200 dB @ 38 kHz, which probably allows for detection of odontocetes’ clicks at distances up to 10 to 30m (Astrup, 1999).


holds for many of these fish species. Cod, haddock and pollock have similar hearing capabilities


and sense sound in the frequency range 0.1–450 Hz. For sound intensities close to the threshold, cod are sensitive to sound pressure in the frequency range 100–450 Hz and to sound acceleration for frequencies below 100 Hz. For sound intensities above the threshold value, cod will detect both sound acceleration and sound pressure over a substantial frequency range, 20–150 kHz. Sound pressure thresholds in cod fish in the frequency range 60–300 Hz lie between 80 and 90 dB. Te herring family has an upper hearing frequency limit of


1–8 kHz, with an optimum range of 0.6–2 kHz. Tese hearing specialists are also sensitive to sound pressure towards lower frequencies. Sound-induced escape responses can be triggered from sound pressure by infrasonic sound down to 5 Hz. Recent studies have demonstrated that the inner ear of the


herring subfamily shad is specialised to sense ultrasound in the range of 20–120 Hz, with threshold values in the range of 150–160 dB for frequencies at 80–100 kHz. Te sensitivity is sufficient for the shad to sense attacking dolphins’ ultrasonic clicks, which can have sound pressure up to 220 dB @ 1 m. Te other subfamilies of herring do not have ultrasound hearing.


velocity (V) and sound pressure (P) is constant, equal to the water impedance. But moving closer than around ¹⁄₆ of the wavelength, into the sound’s near field, this simple relationship breaks down. Te V/P ratio strongly increases with decreasing distance to the source, thus inducing high levels of particle accelerations. However, when a fish is free to swim away from the sound source, it will likely be in the far-field of the source. For a frequency of 1 Hz, the far-field distance is around 250m.


140


Per Eide Studio/Norwegian Seafood Export Council


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284  |  Page 285  |  Page 286  |  Page 287  |  Page 288  |  Page 289  |  Page 290  |  Page 291  |  Page 292  |  Page 293  |  Page 294  |  Page 295  |  Page 296  |  Page 297  |  Page 298  |  Page 299  |  Page 300  |  Page 301  |  Page 302  |  Page 303  |  Page 304  |  Page 305  |  Page 306  |  Page 307  |  Page 308  |  Page 309  |  Page 310  |  Page 311  |  Page 312  |  Page 313  |  Page 314  |  Page 315  |  Page 316  |  Page 317  |  Page 318  |  Page 319  |  Page 320  |  Page 321  |  Page 322  |  Page 323  |  Page 324  |  Page 325  |  Page 326  |  Page 327  |  Page 328  |  Page 329  |  Page 330  |  Page 331  |  Page 332  |  Page 333  |  Page 334  |  Page 335  |  Page 336  |  Page 337  |  Page 338  |  Page 339  |  Page 340  |  Page 341  |  Page 342  |  Page 343  |  Page 344  |  Page 345  |  Page 346  |  Page 347  |  Page 348  |  Page 349  |  Page 350  |  Page 351  |  Page 352