search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
large compared to the wavelength. Te corresponding expression for the pressure has a similar exponential decay with depth. Te particle velocity represented by these equations can be represented as circular (elliptical if the water depth is shallower) particle orbits. Te dispersion relation for ocean waves


depends on the water depth. However, if we assume large water depths, it is simply given as ω2


= gk where g is the gravitational acceleration (9.8 m/s2), ω is


the circular frequency (ω = 2π/T) and k is the wave number. From the dispersion equation we can estimate the period of a sinusoidal ocean wave if the wavelength is known, since k = 2π/λ. It is clear that disturbances caused by the ocean wave will decrease with depth, and hence it might be a good idea to tow seismic streamers at large depths. Typical time periods (T) for ocean waves are more than a


Figure 5.15: Smoothed measurements of wave height (black solid line) at the Gullfaks field in 2012 and corresponding modelled wave heights by assuming a quadratic relation (red solid line) between wind velocity and wave height. The average wave height is 2.7m. (a=0.025 s2


/m; b=1 m).


second; sitting on a beach we can usually count eight seconds between each wave. Tis means that the noise both on the pressure component and the velocity component will be outside the typical frequencies (4–100 Hz) of interest for a seismic experiment. However, as we are striving for lower and lower frequencies (below 3 Hz – see Section 5.1) the noise caused by slow variations in particle velocity caused by ocean waves close to the streamer might influence our data. Te influence from ocean waves depends strongly on the streamer depth; for streamer depths greater than 20m, which is typical today, the typical particle velocity caused by the ocean wave height shown in Figure 5.16 is less than 0.1 m/s and very low frequency (0.2 Hz). Compared to typical towing velocities for streamers (2.5 m/s), 0.1 m/s is small. Since both the pressure variations and the velocities caused by water waves decay exponentially with depth, the direct influence is assumed to be minimal for normal seismic frequencies (above 4–5 Hz). Tis exponential decay rate is controlled by the streamer depth (z) divided by the wave length (equations 1 and 2 on previous page). During heavy storms it is known that


ships crossing the North Sea via, for instance, the Dogger area, which has shallow water ranging from 20 to 60m, get sand on deck, indicating that the waves have sufficient energy to lift sand from the sea bed to the surface. Close to shore this phenomenon is well known, as a thick layer of sandy foam can be observed on the beach after a storm.


5.3.2 Wind Speed and Wave Height Correlation


Te close relationship between wind speed and ocean wave height is well known. For fully developed ocean waves it is commonly assumed that the wave height increases with wind velocity squared, and a recent example showing


203


wave data from the Gullfaks field in the North Sea is shown in Figure 5.15. We observe a surprisingly strong correlation between


the smoothed average wave height and the wind speed. Furthermore, we observe that the ocean waves for some periods lag behind the wind: first the wind calms down and then the waves. Te average wave height measured at the Gullfaks field in 2012 was 2.7m. Pierson and Moskowitz derived an empirical formula for the energy of a fully developed sea state as a function of frequency, known as the Pierson-Moskowitz spectrum, which showed that the peak wave energy decreases as the wind velocity increases. Another crucial parameter that is used to describe ocean


waves is wave steepness, s, which is equal to the wave height divided by the wavelength. If s is larger than 1/7, the wave will break. Tis value might vary significantly. Typical average values for the North Sea are between 0.06 and 0.006 (Torsethaugen, 1993). Tis means that for the Gullfaks example shown in Figure 5.15, assuming a steepness of 0.06, the average wavelength is 40m, corresponding to a period of 5 seconds. One


Figure 5.16: The decay curve for particle velocity versus depth. Here we have used the exact dispersion relation without assuming that the water depth is much larger than the wavelength. The vertical velocity at the seabed (60m) is actually zero; the deviation is caused by the logarithmic plot. The period of this wave is 5 seconds, corresponding to a frequency of 0.2 Hz.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284  |  Page 285  |  Page 286  |  Page 287  |  Page 288  |  Page 289  |  Page 290  |  Page 291  |  Page 292  |  Page 293  |  Page 294  |  Page 295  |  Page 296  |  Page 297  |  Page 298  |  Page 299  |  Page 300  |  Page 301  |  Page 302  |  Page 303  |  Page 304  |  Page 305  |  Page 306  |  Page 307  |  Page 308  |  Page 309  |  Page 310  |  Page 311  |  Page 312  |  Page 313  |  Page 314  |  Page 315  |  Page 316  |  Page 317  |  Page 318  |  Page 319  |  Page 320  |  Page 321  |  Page 322  |  Page 323  |  Page 324  |  Page 325  |  Page 326  |  Page 327  |  Page 328  |  Page 329  |  Page 330  |  Page 331  |  Page 332  |  Page 333  |  Page 334  |  Page 335  |  Page 336  |  Page 337  |  Page 338  |  Page 339  |  Page 340  |  Page 341  |  Page 342  |  Page 343  |  Page 344  |  Page 345  |  Page 346  |  Page 347  |  Page 348  |  Page 349  |  Page 350  |  Page 351  |  Page 352