search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
OPERATIONS, TECHNOLOGY, AND INFORMATION MANAGEMENT


OM Forum - Te Best of Both Worlds: Machine Learning and Behavioral Science in Operations Management


ANDREW M. DAVIS PROFESSOR


BREAZZANO FAMILY TERM PROFESSOR OF MANAGEMENT


Samuel Curtis Johnson Graduate School of Management


Cornell SC Johnson College of Business Cornell University


Manufacturing and Service Operations Management, 26, 5, Sept. 2024 LINK TO PAPER LINK TO ANDREW DAVIS VIDEO


Co-authors • Andrew M. Davis


Professor, Breazzano Family Term Professor of Management,


Samuel Curtis Johnson Graduate School of Management, Cornell SC Johnson College of Business, Cornell University


• Charles J.Corbett, Anderson School of Management, University of California Los Angeles


• Elena Katok, Naveen Jindal School of Management, University of Texas at Dallas • Shawn Mankad, North Carolina State University


Summary Two disciplines increasingly applied in operations management (OM) are ma-


chine learning (ML) and behavioral science (BSci). Machine learning is a form of engineering that aims to solve problems, whereas behavioral science aims to understand how the world works. Rather than treating these as mutually ex- clusive fields, the authors discuss how they can work as complements to solve important operations management problems.


First, they illustrate how ML and BSci enhance one another in non-OM domains before detailing how each step of their respective research process- es can benefit the other in OM settings. Tey then conclude by proposing a framework to help identify how ML and BSci can jointly contribute to OM problems, complementing each other to compensate for individual weakness- es in certain areas. Overall, the authors aim to explore how the integration of ML and BSci can enable researchers to solve a wide range of problems, allow- ing future research to generate valuable insights for managers, companies, and society.


CONTENTS TO MAIN


| RESEARCH WITH IMPACT: CORNELL SC JOHNSON COLLEGE OF BUSINESS • 2024 EDITION


48


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85