search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
OPERATIONS, TECHNOLOGY, AND INFORMATION MANAGEMENT


Predicting mean and variance in inventory order decisions


LI CHEN


EMERSON PROFESSOR OF MANUFACTURING MANAGEMENT


Samuel Curtis Johnson Graduate School of Management


Cornell SC Johnson College of Business Cornell University


Decision Sciences, 55, 4, March 2024 LINK TO PAPER LINK TO LI CHEN VIDEO LINK TO ANDREW DAVIS VIDEO


Co-authors • Li Chen


Emerson Professor of Manufacturing Management, Samuel Curtis


Johnson Graduate School of Management, Cornell SC Johnson College of Business, Cornell University • Andrew M. Davis


Professor, Breazzano Family Term Professor of Management,


Samuel Curtis Johnson Graduate School of Management, Cornell SC Johnson College of Business, Cornell University


• Dayoung Kim, National University of Singapore


Summary To explain and predict the mean and variance of observed inventory order


ANDREW M. DAVIS PROFESSOR


BREAZZANO FAMILY TERM PROFESSOR OF MANAGEMENT


Samuel Curtis Johnson Graduate School of Management


Cornell SC Johnson College of Business Cornell University


decisions in a newsvendor problem, the authors develop a simple forecast-an- choring model assuming that people employ a two-step decision heuristic. In the first step, a behavioral bias may gravitate the decision maker’s point forecast toward a random forecast versus a constant unbiased forecast. In the second step, a behavioral bias of the same magnitude may cause the decision maker to treat the point forecast as if it is the mean of potential demand, and then make an upward or downward adjustment depending on the underage and overage costs.


Te authors evaluate the performance of this descriptive forecast-anchoring model across five experimental newsvendor data sets. First, they fit the model to a setting with uniform demand, and then use the corresponding estimates to generate predictions in a secondary data set with uniform demand, as an out-of-sample test. Tey proceed to fit the model to three additional newsven- dor data sets, two with normal demand and one with asymmetric two-point demand. In all cases, the model predicts the mean and variance of inventory order decisions well, and can help upstream supply chain parties to anticipate inventory order decisions from buyers and improve profitability.


CONTENTS TO MAIN


| RESEARCH WITH IMPACT: CORNELL SC JOHNSON COLLEGE OF BUSINESS • 2024 EDITION


45


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85