search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
From paper to pixels: The digital evolution of marina design


By John Hogan, Director Marine Structures


Marinas were once designed by talented engineers and seasoned sailors using flat 2D drawings and guided by AS3962, Australia’s standard for marina design. Today, however, the marine infrastructure sector is undergoing a remarkable transformation. Advanced marina design has sailed far beyond conventional blueprints, embracing cutting-edge digital tools and sustainable practices to create more resilient, efficient, and environmentally conscious waterfront developments.


Futuristic marina concept featuring sustainable and smart design elements Image credit: Behance - Marina project in Ulcinj - Port Milena, Montenegro


Traditionally, AS3962 served as the guiding framework for marina planners, addressing everything from wave climate to berth configurations. While it remains a


foundational document, its static guidelines are now being reinterpreted and expanded through modern digital methodologies. Designers are turning to Building Information Modelling (BIM), 3D simulations, and Geographic Information Systems (GIS) to envision and execute complex marina environments with unprecedented precision.


These technologies allow for dynamic modelling of tidal flows, wave interaction, and vessel traffic, enabling engineers to optimise layouts in real time and


118 | ISSUE 113 | SEP 2025 | THE REPORT


under varied climatic scenarios. For instance, 3D hydrodynamic simulations help identify optimal breakwater placements or dock orientations, reducing sediment build-up and ensuring year-round operability. Augmented Reality (AR) is also making its mark, offering stakeholders immersive experiences of proposed developments well before construction begins. Once the designers have the data, the same information can be used in digital manufacturing. Suppliers are increasing the use of robotic welding and 3D laser cutting to fabricate custom aluminium or stainless- steel marina components - such as cleats, brackets, frames, and gangways.


These elements are often highly customised to fit unique site geometries or loading conditions. Instead of being cut and assembled manually, engineers now use CAD (Computer-Aided Design) files directly in conjunction with CAM (Computer- Aided Manufacturing) software to drive robotic systems. These systems can perform precise, repeatable cuts and welds, reduce human error and allowing faster production with high consistency.


An example is Seaflex anchoring systems, which often involve precision- manufactured elastic moorings and attachment assemblies. These are digitally designed and manufactured to suit


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136