search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Demedication inspired by nature…CCPA’s way


CCPA nutritionists unearth forgotten natural ingredients to pave the way for antibiotic reduction. BY FABRICE ROBERT, DVM, CCPA GROUP R&D MANAGER


M 0.6 0.5 0.4 0.3 0.0 0.1 0.0 Control Perruchot, 2019 5 10 PSM (µg/mL) 100


Forgotten ingredients What are these plants secondary metabolites (PSM) and how do they benefit animals? PSM belongs to a wide variety of chemicals: phenols, terpenes, flavonoids, tannins. All are active molecules for plants: defence from microorganisms (viruses, bacteria, protozoans), defence from herbivores, attraction of pollinators (insects, birds, bats) and cells protection against UV. When consumed by animals, they demonstrate pharmacological activities mainly focused on cell protection, immunomodulation, microbiota modulation


54 ▶ ANTIBIOTIC REDUCTION | DECEMBER 2021


ickael Huffman of the University of Kyoto demonstrated 20 years ago that 22% of what wild chimpanzees eat has no strict nutritional action but pharmacological effects induced by


secondary metabolites of the plants consumed. Wild animals can select plants with antispasmodic effect when they experi- ence gastrointestinal pain, sexual stimulating plants during re- production periods or even anxiolytic when they feel stressed. You might think that this ability only concern evolved animals like primates, it’s wrong. Insects are also able to utilise the chemical defences of plants to protect themselves from their own predators or parasites. Centuries of co-evolution of plants and animals has led to complementary strategies to maintain the homeostasis, essential balance to keep animals healthy.


Adjusted feeding behaviour In face of these centuries of co-evolution that led nature to


Figure 1- Relative expression of cell protection associated transcription factor (Nrf-2) in addition of plant secondary metabolite (PSM) on mammary epithelial cells.


retain best “health solutions”, has the recent but intense genetic selection altered these capacities in farm animals? The answer is no. Several research demonstrated that ruminants with a high burden of gastrointestinal parasites, when given the opportunity to do so, change their feeding behaviour, looking for plants in height – devoid of infesting larvae – richer in tannins. Tannins are known for their anti- parasitic role. This behaviour is maintained if their parasite burden is high. Chickens are also able to choose plants secondary metabolites depending on their physiological status. In a recent publication a team of INRAE demonstrated that chicks can make spontaneous choices of essential oils according to their postnatal experience. Stressed chicks spontaneously consume more verbena than the “non stressed” control group which prefers clear water. The main components of verbena’s essential oil (geranial, neral and limonene) are known for their anxiolytic and sedative effects. Pigs and wild boars are also able to select specific roots known for their anthelminthic effects.


Plant-based diet If we have a look at natural diets of livestock species, it becomes obvious that plants secondary metabolites are an essential part of their nutrition. Wild ruminants consume between 50 and 70 plant species per day, while we offer them between 4 and 6 in farm conditions. The diet of feral pigs or wild boars is more than 90% plant-based. It is mainly composed of plants material with an extraordinary variety: bulbs, roots, tubers, wood, bark, seeds, herbs, grass, leaves, nuts and various fruits. The diet of the red junglefowl, our domestic chicken ancestor has the same diversity.


Relative Nrf-2 expression


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96