search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Air Monitoring 33


STEINHÄUSER, K. G. & VALENTIN, I. 2023. PFAS: forever chemicals—persistent, bioaccumulative and mobile. Reviewing the status and the need for their phase out and remediation of contaminated sites. Environmental Sciences Europe, 35, 20.


BUCK, R., FRANKLIN, J., BERGER, U., CONDER, J., COUSINS, I., DE VOOGT, P., JENSEN, A., KANNAN, K., MABURY, S. & VAN LEEUWEN, S. 2011. Perfl uoroalkyl and polyfl uoroalkyl substances in the environment: terminology, classifi cation, and origins. Integrated environmental assessment and management, 7.


Figure 2: Validation efforts of the LUC/VI/003 compendium method OTM-45 sampling train (left) and different sampling train variants during the 2024 interlaboratory comparison (right).


D’AMBRO, E. L., MURPHY, B. N., BASH, J. O., GILLIAM, R. C. & PYE, H. O. T. 2023. Predictions of PFAS regional-scale atmospheric deposition and ambient air exposure. Science of The Total Environment, 166256.


D’AMBRO, E. L., PYE, H. O. T., BASH, J. O., BOWYER, J., ALLEN, C., EFSTATHIOU, C., GILLIAM, R. C., REYNOLDS, L., TALGO, K. & MURPHY, B. N. 2021. Characterizing the Air Emissions, Transport, and Deposition of Per- and Polyfl uoroalkyl Substances from a Fluoropolymer Manufacturing Facility. Environmental Science & Technology, 55, 862-870.


EEA 2019. Emerging chemical risks in Europe - ‘PFAS’. European Environmental Agency (EEA).


EPA. 2020. US EPA’s Science-Based Approach to Understanding and Managing Environmental Risk from PFAS. Available: https:// www.epa.gov/sites/default/fi les/2020-09/documents/epa_pfas_ rd_overview_complete_2020_09_25.pdf.


EPA 2021. Other Test Method 45 (OTM-45) Measurement of Selected Per- and Polyfl uorinated Alkyl Substances from Stationary Sources. Environmental Protection Agency (EPA).


GIESY, J. P. & KANNAN, K. 2001. Global distribution of perfl uorooctane sulfonate in wildlife. Environmental Science & Technology, 35, 1339-1342.


Figure 3: Monitoring approach to identify potential guided and diffusive PFAS emission sources at an industrial site and evaluate temporary assessment framework in Flanders.


comparison (ILC) was performed to evaluate the equivalence of the sampling train variants, by means of preconditioned (temperature and humidity) air sampling with duplo native spiked (50 compounds) sampling train variants considered in the LUC/VI/003 compendium method (Figure 2).


“Results and fi eld experiences”


Repeated stack measurements at Indaver showed that physicochemical properties (chain length, functional group, solubility,…) of the PFAS compounds determined the affi nity towards individual sampling train compartments (fi lter, XAD-2, impinger water, rinse), showed overall low medium and fi eld blank concentrations, negligible sampling train breakthrough and demonstrated lab optimization efforts to deal with the wetness of the primary XAD-2 module and improve long- chain (C8-C18) recoveries over time. The stability of the PFAS fi ngerprints (relative composition of individual compounds) illustrated the reproducibility of the method, while fl ue gas treatment optimizations by Indaver resulted in signifi cant emission reductions over time. Similarly, PFAS that were diffi cult to quantify in terms of internal standard recovery and blank contamination risk included PFPrA, PFPrS and 6:2FTS, glassware contamination with long-chain PFAS resulted in a more stringent cleaning procedure and sulfonate recovery problems were observed during the validation exercise.


When applying the compendium method on other stacks and industries in Flanders, PFAS emissions are observed at every stack ranging between 11 ng/Nm³ and 43 mg/Nm³ for the total sum of quantifi ed PFAS, with generally stable and stack- specifi c fi ngerprints. Measured stack emission concentrations (ng/Nm³) are converted to ambient concentrations by means of a bi-gaussian IFDM model in order to evaluate the emission contribution against the temporary EFSA assessment framework in Flanders (0.4 ng/m³ for the sum of EFSA compounds PFOA, PFNA, PFHxS and PFOS), an inhalation equivalent derived from the EFSA tolerable weekly intake (TWI) values (Figure 3).


The validation exercise of the OTM-45 sampling train resulted in 19 quantitative and 22 indicative PFAS compounds and the LUC/ VI/003 compendium method can be consulted via https://emis.vito.be/nl/erkende-laboratoria/lucht-gop/compendium-


luc. Interlaboratory comparison (ILC) results are still underway.


“What’s next?” As the physicochemical diversity and wide-scale prevalence of PFAS requires a combination of specifi c sampling and analytical methods, there is an urgent need for harmonized PFAS air monitoring across the EU. VITO’s lab and fi eld experiences have resulted in a validated Flemish compendium method for the quantifi cation of ~50 PFAS (>C4, boiling point >100°C) in fl ue gasses (LUC/VI/003) and has already shown a variety of prevailing PFAS emission concentrations and fi ngerprints in stack emissions across Flanders, Belgium. The current target method focusses on a selection of PFAS compounds and is often combined with non-target/suspect screening methods to confi rm the representativity of the target PFAS compounds and/or identify other relevant compounds that are present in the emissions. The existing compendium method will be further optimized to include more quantitative compounds, while complementary methods will be developed to extend the scope towards more volatile ultra- short chain (C1-C3) PFAS. Following our recent interlaboratory study (including international participants), we call on all relevant stakeholders to harmonize PFAS monitoring (and related emission standards) as much as possible!


More information: 1. LUC/VI/003 compendium NL: https://refl abos.vito.be/2024/LUC_VI_003.pdf ENG: https://refl abos.vito.be/2024/LUC_VI_003_ENG.pdf


2. Recent presentation at EU “Tackling PFAS pollution & Launch Knowledge Center Innovative Remediation Solutions”:


https://assets.vlaanderen.be/image/upload/v1708681087/ VITO_Jelle_Hofman_Jan_Peters_Patrick_Berghmans_Bart_ Baeyens_Griet_Jacobs_Stefan_Voorspoels_Gert_Otten_ r3mhrs.pdf


REFERENCES


ABUNADA, Z., ALAZAIZA, M. Y. D. & BASHIR, M. J. K. 2020. An Overview of Per- and Polyfl uoroalkyl Substances (PFAS) in the Environment: Source, Fate, Risk and Regulations. Water, 12, 3590.


BRUNN, H., ARNOLD, G., KÖRNER, W., RIPPEN, G., READ, SHARE or COMMENTon this article at: envirotech-online.com/article


GROFFEN, T., BERVOETS, L. & EENS, M. 2023. Temporal trends in PFAS concentrations in livers of a terrestrial raptor (common buzzard; Buteo buteo) collected in Belgium during the period 2000–2005 and in 2021. Environmental Research, 216, 114644.


LIN, H., TANIYASU, S., YAMAZAKI, E., WEI, S., WANG, X., GAI, N., KIM, J. H., EUN, H., LAM, P. K. S. & YAMASHITA, N. 2020. Per- and Polyfl uoroalkyl Substances in the Air Particles of Asia: Levels, Seasonality, and Size-Dependent Distribution. Environmental Science & Technology, 54, 14182-14191.


OECD 2018. TOWARD A NEW COMPREHENSIVE GLOBAL DATABASE OF PER- AND POLYFLUOROALKYL SUBSTANCES (PFASs):SUMMARY REPORT ON UPDATING THE OECD 2007 LIST OF PERAND POLYFLUOROALKYL SUBSTANCES (PFASs). OECD.


RAUERT, C., SHOIEB, M., SCHUSTER, J. K., ENG, A. & HARNER, T. 2018. Atmospheric concentrations and trends of poly- and perfl uoroalkyl substances (PFAS) and volatile methyl siloxanes (VMS) over 7 years of sampling in the Global Atmospheric Passive Sampling (GAPS) network. Environmental Pollution, 238, 94-102.


SMITH, S. J., LAURIA, M., HIGGINS, C. P., PENNELL, K. D., BLOTEVOGEL, J. & ARP, H. P. H. 2024. The Need to Include a Fluorine Mass Balance in the Development of Effective Technologies for PFAS Destruction. Environmental Science & Technology, 58, 2587-2590.


VITO 2022. Bepaling van per- en polyfl uoroalkylverbindingen (PFAS) in water met LC-MS/MS: Ontwerpmethode MB 2022.


WINCHELL, L. J., WELLS, M. J. M., ROSS, J. J., FONOLL, X., NORTON, J. W., KUPLICKI, S., KHAN, M. & BELL, K. Y. 2021. Analyses of per- and polyfl uoroalkyl substances (PFAS) through the urban water cycle: Toward achieving an integrated analytical workfl ow across aqueous, solid, and gaseous matrices in water and wastewater treatment. Science of The Total Environment, 774, 145257.


Author Contact Details Jelle Hofman1


, Bart Baeyens1 Aline Reis de Carvalho2


, Griet Jacobs2 , Stefan Voorspoels2


VITO Environmental Intelligence, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium 2


Patrick Berghmans1, Gert Otten1 1


, ,


VITO GOAL, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium


Jelle Hofman • jelle.hofman@vito.be, ORCID: 0000-0002-3450-6531


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108