search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
56 Biogas Spotlight


Setting up a European Green Gas Market –


Challenges and Opportunities


Biomethane is a 100% renewable gas which can be used for the same purposes as natural gas in transport, electricity and heating. Thanks to its chemical composition and energy content similar to natural gas, biomethane can be injected into the natural gas grid and thus substitute part of the fossil gas. Its full deployment in Europe is hampered mainly by the lack of cross-border cooperation and the insufficient incentives within national borders. Recently, first progress in enabling international trading and harmonising technical standards has been made at the European level.


Biogas has a large untapped potential due to its high substrate flexibility, it can be blended with natural gas at any proportion (or used in its pure form), and it can


significantly reduce CO2 emissions: when a vehicle is fuelled with waste-based biomethane, it reduces greenhouse gas emissions even by 97% compared to diesel or petrol powered vehicles.


Biomethane is an upgraded form of biogas which can be sourced from organic waste, energy crops, sewage sludge and agricultural residues. Biomethane is thus a green gas, 100% renewable. Its chemical composition and energy content are comparable to natural gas allowing to use it in the same appliances as the fossil gas including vehicle fuel and injection into the gas grid. It can be blended with natural gas at any ratio. The green gas provides Europe with several advantages: it contributes to the European climate targets by


reduced CO2 emissions and improved air quality, and increases security of supply and makes Europe more energy independent from import of fossil fuels.


Currently biomethane is produced in 15 European countries1 injected into the natural gas grid in most of them2


and . Altogether there


are over 200 plants in Europe which produce biomethane for three sectors: electricity, heat and transport. Particularly Sweden has tapped into the potential of biomethane as a renewable transport fuel: half of the produced biogas in Sweden is upgraded and used as a vehicle fuel.


Thanks to the mature technology and the existing natural gas infrastructure, biomethane is a commercially viable energy source in most parts of Europe but its full potential has not been exploited due to the lack of cross-border cooperation and the insufficient financial incentives within national borders which hamper the full deployment. The current support schemes that have been set up for renewable energies around Europe tend to be limited to green electricity while green gas is mostly left outside the schemes. The biomethane feed-in tariffs in the UK and France represent positive exceptions. In general, however, under the current market conditions, biomethane cannot compete against natural gas in sales price in most European countries as long as CO2 certificats are traded at such low levels.


The biomethane market is promoted for example by the Intelligent Energy Europe (IEE) project GreenGasGrids3


which brings together


stakeholders from both national and international levels such as European Biogas Association. The three-year-project works on the


most pressing issues of the biomethane market development regarding sustainability, technical standards, trade, and policy targets.


Trading biomethane over the country borders in Europe


The only cross border trading transactions of biomethane that so far were reported (from Germany to Switzerland, Sweden and the Netherlands) have been carried out under bilateral agreements between the participating companies without involving any government authorised certification organisations.


As in the case of renewable electricity, also renewable gas needs declaration, tracking, labelling and trading systems to increase the share of renewable energy source and to create market confidence. These instruments provide reliable information on the source of primary energy (declaration), on its flow (tracking), on other characteristics (labelling), and they allow it to be traded (trading). The next paragraphs will take a look at such systems established for the biomethane market.


In fact, only one biomethane labelling scheme exists so far, namely “naturemade star biomethane” in Switzerland. Additionally, in Sweden biomethane is sold at several filling stations under the Nordic Ecolabel (SWAN) which covers 63 different products and is thus not dedicated to the specific requirements of biomethane.


As regards declaration, tracking and trading, the project GreenGasGrids has studied the feasibility of introducing such systems at the EU level. The national biomethane registries that have been established in Austria (Biomethan Register), Denmark (Energinet), Germany (Biogasregister), the Netherlands (Vertogas), Switzerland (VSG) and the United Kingdom (Green Gas Certification Scheme) guarantee the origin of biomethane as for renewable origin, parameters of producing technology etc. Also basically all the


Author Details: Susanna Litmanen, Policy Advisor


European Biogas Association – EBA


www.european-biogas.eu www.greengasgrids.eu


1AT, CH, DE, DK, ES, FI, FR, HU, IS, IT, LU, NL, NO, SE, UK, 2 3www.greengasgrids.eu, 4


IET Annual Buyers’ Guide 2013 www.envirotech-online.com AT, CH, DE, ES, FI, FR, LU, NL, NO, UK http://www.greengastrading.co.uk/


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136