Air Monitoring 41
However, in January 2013 more than 140 countries agreed a set of legally binding measures to curb mercury pollution, which included measures to reduce emissions from power plants and metals production facilities.
In the UK, one of the Coalition’s original pledges was to work towards EU air quality standards although this has been refined into a mid-term ‘to-do’ list which seeks to curb air pollution in towns and cities.
Urban air quality
Initiatives to improve air quality are focused on those urban areas that suffer from the highest levels of pollution. For example, air quality improvements can be made by: improving the availability of public transport; by improving traffic management; by restricting vehicular access; by limiting industrial emissions and by improving the quality of vehicle emissions.
It is likely that air quality improvements will be possible through the development of appropriate traffic management systems. For example, an EU funded project CARBOTRAF, combines real-time monitoring of traffic and air pollution in Glasgow and Graz with simulation models for the prediction of CO2 and black carbon emissions in order to provide on-line recommendations for alternative traffic management options. The research is ongoing, but the participants hope to develop a system which combines air quality monitoring with traffic management to automatically protect air quality.
The role of air quality monitoring
Clearly, policy makers need reliable air quality data to make informed decisions and to be able to measure the effects of policy. Monitoring technology therefore has a vital role to perform. However, the developers and manufacturers of air quality monitoring equipment have to design instruments that meet the requirements of standards such as BS, AFNOR, ASTM, TÜV, EN and ISO, so it is important that these standards reflect the needs of society. For example, early monitoring standards for particulates measured particles according to their size and weight, but took little account of finer particles including black carbon and those with a diameter of less than 1 micron (PM1) due to their much lower mass.
It has now become clear that finer particulates are responsible for many of the deaths attributable to poor air quality, so new standards are required. Finer particles are able to travel deeper into the respiratory system, and because these tiny particles can act as sponges, they can carry small amounts of toxic species such as PAH’s and Dioxins which are adsorbed onto black carbon particles and transported deep into the body.
Instrument manufacturers are therefore developing new technologies that are able to provide more information on these finer particles. For example, a new Fine Dust Analysis System (FIDAS) has been developed in Germany which offers additional information on both particle size distribution from 0.18 – 30 microns and on particle number in each size range. It also provides continuous real-time simultaneous mass concentration measurements of Total Suspended Particulates, PM1, PM2.5 and PM10. This will improve our understanding of particulate pollution and complement existing PM monitoring technology such as the TEOM FDMS, which is a standard method in many countries.
The standard methods for measuring pollutants such as particulates are extremely important because they can have an enormous impact on air quality. For example, if the methods for measuring particulates change to include finer particulates, the designers of vehicle engines and industrial combustion processes will have to respond accordingly.
Some of the ways in which advances in monitoring technology can help improve our understanding of the factors affecting air quality and the relationship between air quality and health were discussed by speakers at the AQE 2013 show – an international event dedicated to air quality (see
www.aqeshow.com).
Monitoring sites
Traditionally, one of the greatest challenges in monitoring urban air quality is finding a suitable location at which to site the monitoring station. Standard reference method analysers are generally housed in a large air conditioned chamber that requires mains power and necessitates a significant footprint which, in towns and cities, usually means that planning permission is necessary. As a result, many of these stations are not necessarily located in the best position for sampling the air that people are breathing, so the Holy Grail for ambient air monitoring is a smaller battery powered station that delivers data of a similar quality.
In recent years, low cost electrochemical sensors have advanced considerably and have begun to offer an opportunity for supplementing standard monitoring systems with larger numbers of smaller, more flexible, monitors. However, until recently, these electrochemical sensors have been unable to deliver sufficiently accurate data at the low levels required – parts per billion (ppb).
In September 2013 a new type of ambient monitor will be made available to the market. Known as ‘AQMesh’ the new monitors are low cost, small, battery powered, web enabled and suitable for mounting on a normal lamp post. This
dramatically alters ambient air quality monitoring, because it enables the location of accurate monitoring systems at the location of most interest.
AQMesh will supplement existing networks by enabling air quality to be monitored in the locations that need to be monitored rather than where
equipment can be conveniently positioned. The small post- mounted units are completely wireless, using battery power and GPRS communications. AQMesh 'pods' measure the main air polluting gases and wirelessly communicate data to a ‘cloud’ where sophisticated data management generate highly accurate readings. Users can view or download data from up to hundreds of pods via an online portal.
Looking forward
With so many political agreements and with air quality regularly making the headlines, it appears that Janez Potočnik’s desire for 2013 to be the year of air, will come true. However, it is clear
that developments in monitoring technology have the potential to drive improvements in air quality as long as standards are updated quickly so that new improved technologies can be assimilated into monitoring networks.
As the quality and effectiveness of air quality monitoring improves, scientists will be in a better position to understand the interactions between different pollutants, their causes, and the effects that they have on human health and the environment.
All of our articles are online! To view and download them, visit:
www.envirotech-online.com
www.envirotech-online.com IET Annual Buyers’ Guide 2013
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136