focus on Microscopy & Microtechniques
Life Science Research: Tomorrows Trends and Technologies Joanne Fallowfi eld, Marketing Manager for Life Science Research, Europe, Middle East and Africa at Leica Microsystems
As a discipline, life science research has come an extraordinary long way over the last century. The revolutionary work of life science researchers has changed how we view and understand biological systems and this new knowledge has led the way to innovative opportunities, allowing the sector to grow and evolve at a phenomenal rate.
Understanding the Life Science sector as it is today and more importantly, anticipating the changes and developments set to meet us in the future, is crucial for life scientists wishing to continue this trend of improvement and development. The current economic climate means that all researchers are facing similar challenges, with upcoming technologies and increased communication pathways enabling a whole range of new advancements.
The LifeSight report, published in July 2014, took the views of over a thousand researchers and scientists and produced a unique glimpse into current and developing trends within the life science research sector. In this article, we discuss the key issues and prospects recognised by the participants, who included Lab Managers and Heads of Department, in areas such as collaboration, funding, big data and Super-resolution microscopy and consider the impact they may have on the future of life science researchers.
Working Together
No sector can hope to develop without successful communication and sharing of data. When speaking to the life science research community, one of the key trends recognised as having an impact on day to day work is the ways in which researchers communicate, both with each other and the world as a whole.
Initially, it would appear we are talking more. An increasing amount of collaboration, internationally and between disciplines, has had a real impact on life scientists. This could be partly due to the emergence of ‘Big science’, which has seen an increase in large-scale projects requiring fi nancial support and labour from many international parties. However, collaborations have also emerged due to heightened possibilities. Thanks to advances in transportation and telecommunications, including the rise of the Internet, communication between institutions has never been easier [1].
This increased communication could have some unexpected advantages. For those looking to acquire funding, the complementary skills provided by different life science researchers, may help projects meet grant conditions. Private foundations have also shown themselves willing to fund centres combining a variety of specialities and several universities have set up funds for projects running across departments [2].
Finding the funds
Across the world, in Southern Europe in particlar, securing funding is proving challenging. The economic downturn in 2008 led to many government budgets being slashed and many expect the decline to continue in coming years. This is supported by recent developments – in 2012, the UK Chancellor announced the country’s R&D budget would remain at its current level, which amounts to about £4.6 billion per year, through to the next election. Publicly funded science in the UK will have to try to continue to grow with another period of fi xed spending [3].
With limited grants available, funders are being more particular about where money is allocated. According to life science researchers certain areas, such as translational research and clinical research, appear more likely to receive funding than others. In addition, funding is expected to become more concentrated around centres of excellence, making it more diffi cult for external institutions to access resources.
Crowd-funding, or funding by non-government bodies, generates a more polarised response from life scientists and the general feeling is one of uncertainty, suggesting that it may be a longer wait until we start to see this appearing more regularly. Although there are many opportunities available for life scientists to obtain funding through non-government channels, there is no strong indication that this will become normal practise.
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144