This page contains a Flash digital edition of a book.
Material Challenges


2025. Meanwhile, pain at the pump is pushing more consumers towards vehicles with better fuel economy. Tese conspiring forces drive OEMs to squeeze every ounce of fuel effi- ciency in current and future models, and lightweighting has played a starring role in that process. Counterbalancing what


can be extremely heavy batteries with lightweight chassis will be a key strategy in the bid by hybrid and bat- tery electric cars to capture a major share of the automo- tive market, as the global auto fleet doubles in the next 30 years. ExxonMobil expects the global personal vehicle fleet to double from more than 800 million today to more than 1.6 billion by 2040. Te company sees conventional hybrids as the big winner, with “full-hybrid vehicles” making up about 40% of the global fleet in 2040, or more than 50% of new car sales in 2040. All of these will need to be partially powered by what are expected to be heavy batteries, so weight savings will be necessary. Tere are multiple routes to weight reduction in automo-


The aluminum body structure of the 1994 Audi A8.


The 1990 Acura NSX is considered to be the first modern aluminum-bodied series-built passenger car.


tive manufacture, but materials, and their more Spartan use, tend to be at the center of the evolution. Recently, the industry has reached a tipping point—punctuated in 2014 with the release of the new aluminum Ford F-150—in the shiſt from heavier steel to lighter aluminum as the primary automotive raw material used. Consumers no longer overwhelmingly per- ceive aluminum as a weak, “tin-can” material, and cars are get- ting lighter because of it. But the shiſt to aluminum presents a new set of problems for auto parts manufacturers conditioned to working with steel. Tis is particularly true given the line speeds and production volumes expected by automakers.


A Departure from Steel Compared to hard and brittle steels, aluminum is a “sticky,” malleable material that resists clean chip breakage.


56 Motorized Vehicle Manufacturing


It is also prone to built-up edges (BUE) in carbide cutting tools, which simultaneously shortens the cutting tool life and exposes component manufacturers to the risks of flaws and excess scrap. To compensate for the quirks of aluminum, manufacturers have turned to a cutting method that essen- tially takes many small “bites” (low feed) from the workpiece, and do so very quickly (high speed). Tis technique main- tains chip control and avoids problems with BUE. But when approaching edges, even the low-feed/high-speed cut can’t always account for a “pushing” effect, in which carbide tools smudge aluminum over the component edge. Tis effect results in an edge burr. Manufacturers of components like automotive cylinder


heads and engine blocks, which require a high degree of precision, didn’t have to worry as much about burring when their workpieces were steel. Now that such workpieces are aluminum, many manufacturers are turning to specialty tool- ing to avoid burring problems. New finishing tools are being


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208