This page contains a Flash digital edition of a book.
late Professor Stephen Malkin, and present a new constant- temperature process that adapts the role of specific energy in grinding temperature with respect to both chip thickness and grinding aggressiveness. Te process can significantly reduce cycle times and improve quality, especially in avoiding thermal damage. Tere is high potential for the optimization as applied to cam-lobe grinding, which is the most common nonround cylindrical grinding operation in the automotive industry. Flatness requirements are very important for a number


of machined components, with demands increasing for face milling precision flat surfaces to less than 50 μm flatness. In NAMRC paper #4518 authors from a US automotive manu- facturer describe a new spindle-part tilt compensation method that was evaluated along with previously proposed methods of depth of cut, tool path and feed compensation. It was found that the spindle-part tilt compensation method to avoid back cutting in machining centers was critical to the control of the flatness as well as to the successful application of the other compensation methods. Te minimum tilt angle for the mill- ing cutter to optimize surface flatness was also determined.


Smooth and Efficient To meet tight dimensional requirements for smooth, high-


efficiency gear meshing, helical gears are finished, typically by grinding, to correct for heat-treat distortion. In MSEC paper #3973, university and supplier authors provide details of a promising carbide rehobbing process as a lower cost alterna- tive to grinding and with the goal of improving part quality


for a typical pinion. Te process of cutting fully hardened semifinished gears on a high-precision hobbing machine pro- vides higher material removal rates compared with grinding, but requires more critical consideration of the cutter geometry due to the generating aspect of hobbing. Another paper, NAMRC #4456 (in review for the Journal


of Manufacturing Systems), addresses gear meshing mechan- ics and the choice of tooth flank finishing processes to reduce gear noise and vibration. Te French university and industry authors studied grinding and powerhoning for an automotive powertrain transmission with two primary gear workpieces. Tey used multiscale analysis to study the topographic signa- ture of the respective finishing processes on the tooth surface and the vibratory response of the gears. Overall it was found that grinding resulted in a reduction of vibrations.


Shaping for the Future Frequent changes to the shapes and advanced functions


of automobiles necessitate constant renewals and highly efficient machining of molds and dies for car body panel forming. Surface quality of the mold is extremely important to the resulting surface finish of car bodies. Before the finish machining process, most semifinished molds are treated by hardening, sometimes up to 58–65 HRC, which causes a toll on cutting tool life. Chinese and Swedish authors of NAMRC paper #4473 (in revision for the Journal of Manufacturing Processes) present a new set of models of ball-end mills of solid carbide with chamfered cutting edges. Te models are


Motorized Vehicle Manufacturing 21


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208