search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Microscopy & Microtechniques Celebrating 10 Years of the UK’s Brightest Light Steve Pritchard, Senior Press Offi cer at Diamond Light Source shares highlights from the facility as it celebrates a double anniversary year.


Diamond is the UK’s synchrotron facility, accelerating electrons to near light speed causing them to emit light 10 billion times brighter than the sun. The light is directed into laboratories known as ‘beamlines’ where researchers study a vast range of subjects, from new medicines and treatments for disease to innovative engineering and cutting-edge technology. Sited at the Harwell Science and Innovation Campus in Oxfordshire, UK, Diamond is approximately the same size as Wembley Stadium, employs over 600 staff and has welcomed 10,000 users.


2017 marks an exciting double anniversary for Diamond Light Source, the UK’s national synchrotron science facility. Fifteen years since the joint venture agreement between the Science and Technology Facilities Council and the Wellcome Trust was signed bringing the company into being, it’s also ten years since we welcomed our fi rst users to the facility. Pic 1 or pic 5 depending on info box


However, time (and science) stands still for no one, and over the next decade Diamond will implement a strategy to sustain the facility as a world-leading centre for synchrotron science supporting UK research and industry, and users from around the world. But fi rst, and as we recently celebrated the publication of the 5,000th paper using data from the facility, it seems only right to look back at some of the key highlights and milestones from the last ten years.


Dedicated Facility


Synchrotrons such as Diamond have been long associated with particle physics, with the Large Hadron Collider (LHC) at CERN still prominent in the news today. Harnessing the light produced by electrons as they race round a synchrotron – initially seen as a by- product of particle-collider machines – is a relatively new idea, with the UK leading the way building the fi rst user-dedicated facility in 1980. These bright beams open up new areas for investigation across a wide range of sciences, with applications in engineering, health and medicine, cultural heritage, and many more.


Diamond works across virtually all fi elds of research; our fi rst users were studying topics as diverse as magnetism, proteins found in our cells, and the composition of a meteorite! One of those fi rst users, Professor David Stuart, is now our Director of Life Sciences and has harnessed the power of Diamond to research the structure of viruses and proteins that interact with viruses – opening new avenues for research in the fi ght against diseases like foot-and-mouth disease virus (and its human variant) and infl uenza.


Biosciences Research


Much of our work in the last ten years has been in the biosciences, with the light produced at Diamond particularly suited to imaging proteins and viruses and previously unprecedented resolution. Many of our users are interested in the processes and symptoms of diseases such as Alzheimer’s and cancer that will affect the majority of us or our family in our lifetimes. Researchers from the University of Keele used data gathered in part at Diamond to show that brain lesions caused by Alzheimer’s disease could be the source of a neurotoxic form of iron. They hope that their research will help further studies into better diagnosis tools and treatments.


Many of our users work using the broad range of beamlines that form our macromolecular crystallography (MX) ‘village’. These beamlines offer a range of specialities and are capable of determining the three dimensional structures of large biological beamlines. In 2013, scientists from the Universities of Oxford and Reading, The Pirbright Institute, and Diamond created a prototype vaccine for the foot-and-mouth disease virus using beamlines from across the MX village. Using facilities including our I03 beamline, which can be confi gured for biocontainment level 3, the new synthetic vaccine, currently undergoing clinical trials, contains no live virus, making it safer, and it is engineered to stay stable outside a refrigerated environment – enabling prevention the world over.


One of the strengths of the beamlines at Diamond is the fl exibility of the beamlines scientists, who are able to tailor their instruments to probe a variety of subjects. One such example is one of spectroscopy beamlines, I18, where researchers have worked on topics as varied as the structure of wheat grains to new catalysts and historical artefacts. Using complementary X-ray fl uorescence (XRF) and X-ray absorption spectroscopy techniques, researchers from Rothamsted Research were able to gain new insights into the distribution of different mineral components in wheat grains. Their research will help efforts to develop new grains which retain key minerals such as iron and zinc, helping to prevent a variety of chronic health problems including cardiovascular disease and Type 2 diabetes.


Dr Katherine McAuley using the category 3 facility on the I03 beamline.


The very same beamline was used in conjunction with two other beamlines at the facility to help conservationists involved with the preservation of the Tudor warship Mary Rose. Working closely with the Mary Rose Trust and our close neighbour pulsed neutron and muon source, ISIS, we’ve helped to identify the effi cacy of a treatment to prevent the decay of the wooden ship, caused by interactions between sulfur picked up from the sea bed and iron elements of the ship.


INTERNATIONAL LABMATE - APRIL 2017


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68