search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Any piece of equipment protruding the hull will be damaged when the vessel is ice-breaking and therefore no gondola or appendix is allowed. The hull itself has an extreme requirement for smoothness and welded connections are grinded to avoid vortexes. The vessel is also designed with a carefully designed keel diverting the water flow from the bow away from the sensors at the bottom of the hull. Computational Fluid Dynamics (CFD) software are probably the best tool to use when investigating details of hull design and arrangement of hydroacoustic sensors and Rolls-Royce used this actively during the entire ship design process.”


Acoustics package


Under the keel, the ship is outfitted with a large acoustics package from Kongsberg Maritime (KM). This package includes deep and medium depth multibeam systems for bottom mapping, including the EM 302, EM 710 and EA 600, while systems such as SBP300 and TOPAS can be used to look at sub-bottom structures. Position reference will


be provided by the state-of-the-art and industry standard HiPAP 501 system. Also part of the delivery is the KM series of Simrad scientific systems, including a new EK80 wideband split beam fisheries acoustics system, modern scientific multibeam systems ME70 (looking downwards) and MS70 (looking sideways), and omnidirectional sonar SH90 in addition to the new SU90 that can detect and track biology for several kilometres around the vessel. Kronprins Haakon also carries the new Simrad FX80 trawl monitoring system, which can provide a live camera feed from the vessel’s sampling trawl.


Unlike other existing research ice-breakers, the Kronprins Haakon is designed and equipped with acoustics that can both measure and quantify biology in all components of the marine ecosystem. Quantitative multibeam (ME 70 and MS 70) and omnidirectional sonar systems (SU 90 and SH 90) target areas close to the surface and near the bottom where traditional echo sounders cannot be used.


• 38 kHz ADCP • 150 kHz ADCP •


Two keels


Also unique to the Kronprins Haakon is its ability to collect scientific data both when operating in ice and in open waters. To achieve this, the vessel is equipped with two retractable keels (drop keels) that secure an optimal environment for the acoustic instruments. Two drop keels are needed because there is not enough space for all the equipment in one keel. The port drop keel contains: ADCP 38 kHz and EM 710. The starboard drop keel contains: EK 80, MS 70, ME 79, ADCP 150 kHz. However, as the drop keels cannot be deployed when the vessel is breaking ice, the Kronprins Haakon also carries an additional acoustic package of flush mounted EK 80 echosounders in ice protected arctic tanks, so data can be collected even when the vessel is operating in ice.


Communications and navigation systems are mainly supplied by Norwegian companies, such as the K-Bridge Integrated bridge system from Kongsberg Maritime and Dynamic Positioning (DP) system from Rolls Royce Marine. These systems will assist the crew with safe sailing and operations.


transducers both in drop keels and in arctic tanks in the hull.


• Medium range omni-directional fisheries sonar •


long range omni-directional fisheries sonar


Scientific Multi Beam Sonar with transducer mounted in drop keel.


• Scientific Multi Beam Echo Sounder with transducer mounted in drop keel.


• Medium Depth Bathymetric Multi Beam Echo Sounder


Sub Bottom Profiler


Single Beam Echo Sounder with 12 kHz transducer mounted in "arctic tank" in the hull.


• Deep Water Bathymetric Multi Beam Echo Sounder


Scientific Split Beam Echo Sounders: 18, 38, 70, 120, 200 and 333 kHz with transducers both in drop keels and in arctic tanks in the hull.


The Report • September 2020 • Issue 93 | 69


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112