The cursor system for deployment through the moon pool
environment and an environment toxicology laboratory to study the harmful effects of various chemical, biological and physical agents on living organisms. There are also laboratories to examine water samples, collections from plankton net and fish collected from the trawl. Most of the laboratories are located on the 3rd deck, which is the same as the working deck, to make the workflow as easy as possible. To store and conserve samples during the cruise there are four cooler rooms and two freezer rooms. In addition, there is space for three container laboratories outside on the work deck. The vessel also hosts an auditorium for 50 persons and a separate education lab. On the 9th deck, above the bridge, there is an observation room for sea mammal and bird observations.
Contradictory requirements
Designing a research ice-breaker is not an easy task. On the one hand, you have the demand for a silent vessel with minimum Underwater Radiated Noise (URN) and bubble- free zones for all transducers, and on the other, there is the need
The main source of underwater radiated noise is normally the propellers. Due to the requirements for manoeuvrability in ice-covered areas an azimuthing type of propulsion system was selected, even though this is not the type of system with the lowest noise
68 | The Report • September 2020 • Issue 93
for extreme force when breaking ice. Head of design at Rolls-Royce Marine, Mr Einar Vegsund, was responsible for the design of Kronprins Haakon, and says the following about his work on this design:
“Noise signature and air bubble sweep down is a challenging task for all oceanographic research vessels and even more challenging for ice-going vessels since the hull and propulsion systems must be designed to meet the extreme environmental conditions in polar areas.
As ship designers, we have to balance several contradictory requirements and find the optimum balance between efficiency, noise, ice-breaking capability, redundancy, reliability, manoeuvrability, seakeeping, etc.
signature, and a huge effort was made to optimise the system and make it acceptable (propeller, electric motors, steering gear etc.).
The new RV Kronprins Haakon is ice classed according to PC-3 ICE-BREAKER notation and the propellers must have the strength to ‘eat’ ice of 1.5m thickness. The vessel is equipped with two ducted, 5-bladed fixed pitch propellers with a diameter of 4,500mm and has been designed to be free of sheet cavitation at speed up to 11 knots.
Design propellers have been tested and verified in the large HYKAT cavitation tank at HSVA, Germany. Other machinery and auxiliary systems have been designed according to low noise principles being resiliently mounted on well- stiffened foundations.
A high number of acoustic sensors are hull mounted in the forward part of the vessel and exposed to disturbances from air and particles generated by the bow as it pierces the water and waves. In order to avoid damage to the sensors from ice they are flush mounted and protected by titanium windows.
            
Page 1  |  
Page 2  |  
Page 3  |  
Page 4  |  
Page 5  |  
Page 6  |  
Page 7  |  
Page 8  |  
Page 9  |  
Page 10  |  
Page 11  |  
Page 12  |  
Page 13  |  
Page 14  |  
Page 15  |  
Page 16  |  
Page 17  |  
Page 18  |  
Page 19  |  
Page 20  |  
Page 21  |  
Page 22  |  
Page 23  |  
Page 24  |  
Page 25  |  
Page 26  |  
Page 27  |  
Page 28  |  
Page 29  |  
Page 30  |  
Page 31  |  
Page 32  |  
Page 33  |  
Page 34  |  
Page 35  |  
Page 36  |  
Page 37  |  
Page 38  |  
Page 39  |  
Page 40  |  
Page 41  |  
Page 42  |  
Page 43  |  
Page 44  |  
Page 45  |  
Page 46  |  
Page 47  |  
Page 48  |  
Page 49  |  
Page 50  |  
Page 51  |  
Page 52  |  
Page 53  |  
Page 54  |  
Page 55  |  
Page 56  |  
Page 57  |  
Page 58  |  
Page 59  |  
Page 60  |  
Page 61  |  
Page 62  |  
Page 63  |  
Page 64  |  
Page 65  |  
Page 66  |  
Page 67  |  
Page 68  |  
Page 69  |  
Page 70  |  
Page 71  |  
Page 72  |  
Page 73  |  
Page 74  |  
Page 75  |  
Page 76  |  
Page 77  |  
Page 78  |  
Page 79  |  
Page 80  |  
Page 81  |  
Page 82  |  
Page 83  |  
Page 84  |  
Page 85  |  
Page 86  |  
Page 87  |  
Page 88  |  
Page 89  |  
Page 90  |  
Page 91  |  
Page 92  |  
Page 93  |  
Page 94  |  
Page 95  |  
Page 96  |  
Page 97  |  
Page 98  |  
Page 99  |  
Page 100  |  
Page 101  |  
Page 102  |  
Page 103  |  
Page 104  |  
Page 105  |  
Page 106  |  
Page 107  |  
Page 108  |  
Page 109  |  
Page 110  |  
Page 111  |  
Page 112