search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Applications Above Water


The original intention by Ernst Schneider was to operate the rotary technology as a turbine. In this modern era, there may actually be potential to adapt Schneider’s concept to operate as a vertical-axis wind turbine, installed above the deck of a boat. The design allows the blades to change angle with respect to direction of fluid flow, in turn reducing the parasitic drag that is inherent in vertical-axis wind turbines. It is a concept that needs to be tested to determine whether is could efficiently activate a marine propulsion system and enable a vessel to sail into a headwind.


The transverse-axis aeronautical propulsion system offers the combination of vertical lift-off, tough-down and propulsion. It has potential application in ground effect vehicles that due to coastal wave conditions at numerous coastal locations internationally, could be designed to touch down on and lift off from land-based coastal terminals. The transverse-axis propulsion is system is compatible with ground effect wings. A forward mounted propulsion system would direct a rearward flow of air to move at low elevation directly under the ground-effect wings. Companion rear propulsion assemblies would provide a greater percentage of forward thrust.


Flying Car


Cyclo Tech of Austria is focused on developing a flying car that uses forward and rear transverse-axis propulsion assemblies based on the Voith Schneider concept adapted to aeronautical service. It is a technology that could ferry small groups of passengers between the deck of a ship anchored offshore and a coastal location, or between a ship sailing parallel to a coastline and a shore-based location. The Cyclo Tech flying car could carry ship pilots to and from the deck of a moving ship during rough sea conditions, when transfer of pilot between small boat and large vessel is problematic.


The inclusion of ground effect wings into the design of the Cyclo Tech flying car would extend its operating range across water, such as carrying passengers to and from the deck of an offshore drilling platform. The vertical lift- off and touch down capability of the Cyclo Tech vehicle enhance its attractiveness as the technology to carry ship pilots to and from the decks of vessels, or personnel to and from the land pad of an offshore platform. There may be a market for large commercial versions of the technology capable of carrying 12-people between land and offshore locations.


Future Development


While Cyclo Tech has undertaken a considerable amount of research and development into adapting the Voith Schneider propulsion system to aeronautical application, their version of the flying is a prototype with much potential for future development. The growth of airline travel at overcrowded airports provides market opportunity for a vehicle with vertical lift-off and touch-down capability, at small terminals that involve limited space. A large-scale wingless version of the technology could carry passengers over short distances across land while a winged, large- scale variant could be developed to travel over extended distances above water a water surface.


There is likely potential to increase the diameter and width of the rotors, with the option of developing a vehicle with 3-pairs and even 4-pairs of rotors spaced along a fuselage that might also include forward and rear ground-effect wings. A ground-effect winged version of the technology might feature partially enclosed rotors with variable area outlet, to increase air exit speed that would in turn increase vehicle travel speed above water. Vectored thrust that redirects the air stream would assure vertical lift-off and touch down at land-based coastal terminals that offer limited space for vehicle acceleration and deceleration.


Conclusion


The work undertaken by Cyclo Tech of Austria has greatly advanced the concept of adapting maritime-based vertical-axis propulsion technology for the combination of transverse-axis lift-off, touch down and propulsion involving aeronautical technology. As a matter of coincidence, their technology also has potential involving maritime vehicles that travel just above the water surface, using ground effect wings. There is much potential to develop the Cyclo Tech concept to ground effect vehicle application, to provide extended operating range and higher speed capability above a water surface, perhaps involving a vehicle built with the combination of forward and rear ground-effect wings.


Ernst Schneider originally envisioned the vertical-axis technology converting energy at a hydro-electric power dam, except staff at Voith envisioned the technology as a water pump with possible vessel propulsive application. There may be potential to develop a vertical-axis wind turbine based on Ernst Schneider’s original concept, for testing on the deck of a wind-powered vessel where the wind turbine drives an underwater propulsion system. So far, people such as New Zealand engineer Jim Bates, Canadian physics professor Brad Blackford and British researcher Peter Worsley have built wind-powered vessels with horizontal-axis wind rotors, that have sailed directly into headwinds.


THE REPORT | MAR 2025 | ISSUE 111 | 131


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148