FUTURE TECH
By Harry Valentine
Above water applications of
Voith-Schneider Propulsion
Image credit: Cyclo Tech
The Voith Schneider propulsion system rotates on a vertical-axis and is well- proven in tug boat and ferry boat propulsion. A new-generation Austrian company has advanced that technology to rotate on a transverse-axis above water in aeronautical application, with capability for vertical lift-off. Their technology has possible application in wing-in-ground (WIG) vehicles that require vertical lift-off capability at land-based coastal terminals.
Introduction
The history of transverse-axis machinery in vessel propulsion predates the development of longitudinal- axis propellers. Side-wheel and stern-wheel propulsion technology evolved from waterwheels that had for centuries been installed along rivers to deliver mechanical power and proved quite successful in early riverboat operation. Side-wheel propulsion technology proved to be problematic in ocean operation when waves caused vessels to roll, alternately lifting one of the side-wheels above water and affecting vessel directional control. During the early 20th century, several aircraft developers attempted to adapt transverse-axis technology to airplane propulsion, with limited success.
130 | ISSUE 111 | MAR 2025 | THE REPORT
While inventor Ernst Schneider intended to develop a turbine for hydro-electric power dams, the Voith group sought to adapt Schneider’s concept to operate as a water pump. By 1931, the water pump had been developed into a propulsion system for a ferry vessel that sailed on Lake Constance. During early 1960s, designers developed a horizontal-axis version of the Voith Schneider technology to operate on aircraft. Many decades later in Austria, designers at the Cyclo Tech group in Austria adapted modern, lightweight high-strength material to operate on a transverse-axis, in aeronautical propulsion and with prospects for future success.
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148