search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
powerful that it would need 150,000 litres of water to extinguish.


In the near-term, modules that address the dangers of lithium-ion batteries should be added to existing STCW firefighting courses. We then need specific training programmes set up globally and run by experts who can teach seafarers how to deal with this potentially life-threatening hazard.


Establishing what type of training mariners need is the first challenge. The next is ensuring vessels have the right equipment on board to handle a lithium-ion battery fire in line with what they have been taught. For example, crew members may learn that the best approach for dealing with a burning electric vehicle is to submerge it in a tank of water. But what is the point in teaching them this if the ship lacks the right kit or machinery for doing that safely?


Another issue is that electric vehicles are loaded onto carriers in the same way as cars with combustion engines. Petrol or diesel cars that ignite are relatively easy to deal with as each tank has a small amount of fuel that will quickly burn out. With electric vehicles, each lithium-ion battery needs about 50% charge to ensure it does not go flat while being shipped.


Loading electric vehicles with lithium-ion batteries, each carrying a substantial amount of energy, in the same way as standard cars is recipe for a potential catastrophe. If one battery ignites, it can cause a chain reaction, sparking a huge blaze that mariners will struggle to contain. As part of any training courses, specialists need to think about how electric vehicles are loaded onto car carriers and whether crew members have enough room around burning vehicles to contain the blaze.


A definitive solution for dealing with lithium-ion batteries that overheat, catch fire or explode will likely come from chemistry experts or firefighters. Until that happens, our advice to shipowners and operators is to invest in the latest fire-protection systems such as infrared cameras and heat sensors that can detect issues before a thermal runaway occurs. By installing modern detection systems, maritime companies can safeguard the lives of seafarers who lack the knowledge or training to handle blazes caused by highly volatile lithium-ion batteries.


By installing


modern detection systems, maritime


companies can safeguard the lives of seafarers who


lack the knowledge or training to handle blazes caused by highly volatile lithium-ion batteries.


The Report • June 2023 • Issue 104 | 47


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144