Electromagnetic compatibility
Following brutal vibration and drop testing, products are taken to the EMC (electromagnetic compatibility) area, where power supply tests are performed. Interference from switching on other boat equipment can disrupt the shared power supply, so these tests ensure that products will continue to work over the various voltage ranges they might experience. These tests cover issues such as voltage drops, inrush current and surges.
Products are then moved to Raymarine’s radiated immunity chamber, where testing ensures that products can still operate efficiently when exposed to a powerful radiated electromagnetic field. The walls of the test chamber are covered in pyramid-shaped material designed to prevent reflections so that only the direct signal from the antenna is received, making it easier to produce a uniform test field. In this process, the transmit antenna is placed at the far end of the chamber while the test product is placed on a table in the pre- calibrated field and monitored to ensure it operates correctly under radiation, without failures such as lines of interference appearing on a video feed.
In a separate chamber, radiated emissions testing identifies the unintended release of electromagnetic energy. To prevent interference from external signals, the outer chamber is made from two layers of steel. Inside, a combination of ferrite tiles and blue absorber material stops reflections.
From the freezer to the oven to the helm Mariners operating in polar
waters can experience huge seas and sub-zero temperatures. Closer to the equator, searing temperatures create a new set of demands. In either extreme, functional electronics remain a matter of survival, which is why Raymarine gives all its products such a punishingly hard time at its environmental test centre. Extreme temperature testing takes place in specially designed thermal chambers, where products are repeatedly tested and soaked overnight to ensure they start up, restart and function over a massive temperature range between -25 degreesC (-13 degreesF) and 55 degreesC (131 degreesF), and also survive non-operational storage in temperatures between -30 degreesC (-22 degreesF) and 70 degreesC (158 degreesF).
During hot room testing, products are placed inside a 55 degreesC (131 degreesF) chamber for life tests, where they often remain for months. Along similar lines, an IR (Infrared Radiation) test simulates noon sunshine to ensure that displays don’t black out and that no sunlight damage such as glow marks or buckled film occurs inside the display panels.
Thereafter, the salt mist room exposes products to continuous salt spray for two hours before they are then left for seven days in
a warm, damp atmosphere. This process is repeated four times, taking the test duration to 28 days. Products are then examined to ensure that salt and water has not damaged the coatings causing blisters, cracks or colour loss.
Water ingress testing
The next testing is in the wet room, a water ingress area where IPX6 tests are carried out. Products carry this rating if they can withstand arduous tests designed to assess an item’s water and/or dustproofing capabilities. One such test requires products to be continually sprayed with at least 100 litres of water per minute from a fire hose, for a minimum of 30 minutes, and for the unit to continue to function both during and after the test.
The industry standard requires products to be left in a damp and drizzly atmosphere for half an hour, but Raymarine leaves them in for an entire day to replicate real-world usage, with testers taking the products apart afterwards to make sure there’s no water inside. A drip of water over the life of a product becomes a flood inside the unit and is unacceptable.
But these water ingress tests are merely the opening act. Subsequent IPX7 tests determine products’ abilities to withstand immersion at a defined depth for a specified duration. The immersion tanks are also used to check sonar transducer performance. As thorough as the above test procedures are, Raymarine does even more. It employs AIS simulators to test AIS transceivers, DSC base station simulators for radios, GNSS simulators, Wi-Fi simulators and more.
The Report • June 2023 • Issue 104 | 105
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144