absorbing more and more heat because it’s dark,” says Prior. “So you lose the albedo effect, which is the reflectivity of the snow and the ice.”
This leads to a vicious cycle of warming. Less sea ice means more open, dark ocean which absorbs more heat and accelerates temperature rise, not just in the Arctic but worldwide.
“Some of that warming is going to be transported further south,” says Pam Pearson, director of the International Cryosphere Climate Initiative. “So, a warmer Arctic also translates into warmer mid-latitudes because of black carbon.” If the Arctic sea ice melts completely during the summer, there is going to be “so much more sea level rise and extreme weather globally,” says Pearson.
A 2021 report by the Climate Crisis Advisory Group warned that the Arctic is “ground zero” for cascading climate impacts across the planet. Rising temperatures there are leading to warmer ocean temperatures and shifts in atmospheric circulation, and are expected to weaken the jet stream, leading to more extreme weather.
THE IMPACT ON ARCTIC COMMUNITIES
“The melting of sea ice is [causing] global climate disruption, but also local, cultural disruption,” says Dumbrille. Black carbon’s impact is already being felt by indigenous communities living in the Arctic. There are serious health risks associated with exposure to black carbon. A component of fine particulate matter, black carbon has been linked to lung and heart disease and can impair cognitive and immune functions.
“Black carbon is changing our culture,” says Lisa Koperqualuk, vice president international of the Inuit Circumpolar Council. She explains that the rapid melting of ice is drastically changing the Inuit way of life by delaying harvesting seasons and making it more difficult for communities to travel. “We call the ice our highway,” she says. “We use it to travel and to go hunting on the edge of the sea ice.”
There are concerns that black carbon could contaminate the main food source for Inuit communities, seafood, according to Koperqualuk.
The Report • June 2023 • Issue 104 | 125
“The migration patterns of animals could also change [as the ocean warms] because there are some marine mammals that follow colder waters,” she says. “The Arctic is a very important area to protect and to keep as pristine as possible, not only for our culture, but for the [entire] world,” says Koperqualuk. “The Arctic is linked to the rest of the globe. So protecting it is protecting the world as well.”
THE RISE (AND FALL?) OF BLACK CARBON
Between 2015 and 2019, the Arctic saw an 85% rise in black carbon due to increased shipping traffic. “Black carbon emissions are increasing because there are more and more ships going to the Arctic. In recent years, there have been more oil tankers and bunker carriers going to the Arctic,” says Prior.
Maritime traffic grew by 25% between 2013 and 2019, while the distance covered by ships in the region increased by 75%. The increase in shipping traffic in the Arctic is “very much related to the loss of sea ice,” says Prior. The ice is also “forming later in the year and melting earlier,” she says. This means that more ships can sail for longer periods in the Arctic region. It’s leading to a “really nasty feedback loop,” says Pearson. “As you lose more sea ice, you get more ships, more emissions, [and] less sea ice.”
There is an easy way to rapidly cut black carbon emissions, according to environmental groups. If all ships using heavy fuel oil were to switch to a cleaner distillate fuel (similar to diesel) there would be an immediate reduction of around 44% in black carbon emissions from these ships, according to the Clean Arctic Alliance. If all ships also installed diesel particulate filters, which capture soot, black carbon could be reduced by over 90%.
BLACK CARBON COULD RAPIDLY DISAPPEAR FROM THE ATMOSPHERE IF REGULATIONS WERE INTRODUCED
can remain in the atmosphere for 300 to 1,000 years. This means that black carbon could rapidly disappear from the atmosphere if regulations were introduced. “Black carbon could be resolved very quickly, which is why we call it the ‘low hanging fruit’,” says Prior. “Whereas with carbon dioxide you’ve got a very potent warming gas that is staying in the atmosphere for hundreds of years.”
Black carbon is a short-lived climate pollutant with a lifespan of just a few days or weeks, whereas CO2
If the European Union required ships sailing in the Arctic to switch from bunker fuels to cleaner distillate fuels, it would reduce their black carbon emissions in Arctic waters by 50–80%, according to analysis by the International Council on Clean Transportation (ICCT). Technically, it is easy for ships to make the switch. “It’s seen as an overnight solution, because ship engines can run, and already do run, on both heavy bunker fuel and lighter distillate fuel,” says Dumbrille.
“Most engines can just switch between the fuels. In fact, they often do already,” says Prior. “Ships often use the lighter diesel fuels in the coastal waters, and then switch over to the heavy fuels when they’re offshore.”
But uptake of distillate fuels is lagging due to cost. They are more expensive due to higher demand (especially from road vehicles) and because they require more refining, says Dumbrille.
“It’s about twice as expensive to use the cleaner fuel,” says Bryan Comer, who leads the marine programme at the ICCT.
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144