search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
3 Lifesaving Appliances


Detainable deficiencies related to lifesaving systems remained fairly consistent with 2021 totals. Deficiencies related to rescue boats, lifeboats, and the operational readiness of lifesaving appliances were most frequently cited. PSCOs found rescue boats to have had a severed steering gear linkage and a corroded steering cable rendering them inoperable.


On one ship it took the crew over 1.5 hours to lower the rescue boat due to severe corrosion in the lowering boom actuator. During three separate exams over half the immersion suites onboard were found with failed seams, broken zippers, and deteriorated rubber seals.


4 MARPOL Annex I


Deficiencies issued under this category increased from four in 2021 to twenty-two in 2022. Oil filtering equipment and oil discharge monitoring systems accounted for almost half the deficiencies. PSCOs witnessed systems exceeding 15PPM with no activation of the valves to control overboard discharges. PSCOs observed control valves stuck in the open position with a build-up of corrosion in the overboard piping.


There were also three instances where the PSCO identified evidence of illegal discharges of oil overboard. In one case a whistle blower provided video evidence of the ship bypassing the oil filtering equipment and discharging oil directly over the side.


The Coast Guard stresses that if any ship’s system required by international conventions is not in working condition, the master and crew should take necessary actions to remedy the situation in accordance with their SMS before the ship enters port and report any unresolved issues on their advance notice of arrival.


ROLE OF HYDROGEN AND BATTERIES IN DELIVERING NET ZERO IN THE UK ANALYSED IN NEW REPORT


The Faraday Institution has published a report analysing how hydrogen and battery technologies are likely to be used in different sectors within the UK, including transportation, manufacturing, the built environment, and power sectors, to 2050. Both are anticipated to play an increasingly vital role as the UK transitions to a low- carbon future to address critical concerns of climate change and energy security.


Professor Pam Thomas, Chief Executive Officer, Faraday Institution said: “Batteries and hydrogen have distinct characteristics and should largely be viewed as complementary rather than competing technologies. Both will require significant technological advance and extensive scale up of manufacturing and deployment if the UK is to meet its obligation to reach net zero by 2050. The varying timescales of their rollout leads to considerable uncertainties in predicted market share profiles over time.”


The report was commissioned by the Faraday Institution and authored by DNV. The sector analysis draws on DNV’s knowledge and experience within both the battery and hydrogen industries. The analysis uses DNV’s Energy Transition Outlook model, an integrated system-dynamics simulation model covering the energy system that provides an independent view of the energy outlook from now until 2050. The modelling includes data on costs, demand, supply, policy, population and economic indicators.


Read the report in more detail at https://bit.ly/451cg99.


The Report • June 2023 • Issue 104 | 25


Reports and publications


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144