search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Mass Spectrometry & Spectroscopy


Using UV/VIS Spectroscopy for Different types of Vitamin B12 Analysis


Dr Birgit Schelling, Mettler Toledo


Vitamin B12 is a common dietary supplement and pharmaceutical ingredient used in the pharma, food and beverage industries. Analysis of vitamin B12 varies from the identifi cation and purity checks of incoming goods to content determination in the fi nal product. Here we describe how UV/VIS spectroscopy can be used in different types of analysis.


Vitamin B12 (cyanocobalamin) is an important compound containing the rare chemical element cobalt at its centre. It plays a key role in the normal functioning of the brain and nervous system, and in the formation of red blood cells. It is also involved in the metabolism of fatty acids and amino acids and is required for DNA synthesis.


Natural sources of vitamin B12 are mainly of animal origin; plants contain only very small amounts. Consequently, vegetarians particularly can be prone to vitamin B12 defi ciency although people suffering from malabsorption, caused by other factors, can also be defi cient. Vitamin B12 is available as a supplement in many forms, for example in tablets, either in single-or multivitamin preparations, or in processed foods or beverages, such as energy drinks.


concentration. Based on a reference measurement, the concentration of the unknown sample can be easily calculated. The absorbance maximum at 361 nm is typically used for concentration determination. If a mixture with interfering substances at 361 nm is analysed, the peak at 550 nm can also be used.


Derivative Analysis Figure 1. The UV/VIS spectrum of cyanocobalamin displays the three characteristic peaks at 278, 361 and 550 nm.


In the pharmaceutical and food industries, the vitamin B12 derivatives cyanocobalamin or hydroxocobalamin are more commonly used in preference to cobalamin as they provide better stability and incur lower production costs. These derivatives are easily converted into cobalamin in the human body.


Vitamin B12 is ideally suited for UV/VIS analysis, producing three distinct peaks at 278, 361 and 550 nm, respectively (Figure 1). The most intense peak is at 361 nm. The 550 nm peak is responsible for the red colour of the substance.


Qualitative UV/VIS Analysis


For the identifi cation of cyanobalomin, all three peaks must be verifi ed. In addition, the ratio of absorbance at the peaks of 361 and 278 nm, and the ratio at the peaks of 361 and 550 nm are calculated and have to be within a certain range (see Table 1).


Quantitative UV/VIS Analysis


Quantitative UV/VIS analysis can be used to determine the concentration of cyanocobalamin by comparing an unknown sample with a standard of known


As cyanocobalamin can degrade to hydroxocobalamin, it is often interesting to compare the amount of each derivative present in the same mixture. Composition can usually be determined by the ratio of absorbance at 351 and 361 nm. Although the spectrum of hydroxocobalamin is similar to that of cyanocobalamin, it is pH dependent. Therefore, as an alternative method, the absorbance at 361 nm of a solution of pH 8 is measured against a solution of pH 2, refl ecting the spectral shift of hydroxocobalamin with pH [1].


Identifi cation of Cyanacobalamin


We now present the qualitative analysis method for vitamin B12 according to USP 35-NF 30, which is a very simple and economic method of identifi cation.


Sample preparation: approx. 300 mg of cyanocobalamin standard containing 1.07% cyanocobalamin and mannitol are dissolved in 100 mL of purifi ed water. A 1:100 dilution is then prepared by stepwise dilution. An aliquot of the cyanocobalamin solution is transferred into a 1 cm quartz cuvette and the full spectrum from 200 to 700 nm is measured with the Mettler Toledo UV7 spectrophotometer.


A blank cuvette fi lled with purifi ed water is used as a reference. As test acceptance criteria, the presence of the three maxima at 278±1, 361±1, 550±2 nm are checked (Figure 1). The absorbance ratio A361/278 must be in the range of 1.70-1.90 and the ratio A361/A550 in the range of 3.15-3.40. Table 1 shows the acceptance criteria and the results of


INTERNATIONAL LABMATE - JANUARY/FEBRUARY 2018


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92