search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Estimates of marine turtle nesting populations in the south-west Indian Ocean indicate the importance of the Chagos Archipelago


JEANNE A. MORTIMER,NIC OL E E STEB AN ANTE N OR NESTOR GUZMAN and GRAEME C. HAY S


Abstract Global marine turtle population assessments high- light the importance of the south-west Indian Ocean region, despite data gaps for the Chagos Archipelago. The archi- pelago hosts nesting hawksbill Eretmochelys imbricata and green turtles Chelonia mydas, both heavily exploited for 2 centuries until protection in 1968–1970. We assessed avail- able nesting habitat and spatial distribution of nesting activity during rapid surveys of 90% of the archipelago’s coastline in 1996, 1999, 2006 and 2016. We quantified sea- sonality and mean annual egg clutch production from monthly track counts during 2006–2018 along a 2.8 km index beach on Diego Garcia island. An estimated 56% (132 km) of coastline provided suitable nesting habitat. Diego Garcia and Peros Banhos atolls accounted for 90.4% of hawksbill and 70.4% of green turtle nesting. Hawksbill turtles showed distinct nesting peaks during October–February, and green turtles nested year-round with elevated activity during June–October. Estimates of 6,300 hawksbill and 20,500 green turtle clutches laid annu- ally during 2011–2018 indicate that nesting on the Chagos Archipelago has increased 2–5 times for hawksbill turtles and 4–9 times for green turtles since 1996. Regional esti- mates indicate green turtles produce 10 times more egg clutches than hawksbill turtles, and the Chagos Archipelago accounts for 39–51% of an estimated 12,500–16,000 hawks- bill and 14–20% of an estimated 104,000–143,500 green turtle clutches laid in the south-west Indian Ocean. The improved status may reflect .40 years without significant exploitation. Long-term monitoring is needed to capture- interannual variation in nesting numbers and minimize uncertainty in population estimates.


Keywords Chagos Archipelago, conservation policy, Diego Garcia, global assessments, IUCN Red List, nesting season- ality, regional management unit, threatened species


Supplementary material for this article is available at doi.org/10.1017/S0030605319001108


Introduction


temporal variability (Sutherland et al., 2013b), knowledge of extinction risk or species loss (Sutherland et al., 2013a), as well as how disturbances are altering species distribution and abundance (Parsons et al., 2014). To provide an overarching view of the conservation status of species, the IUCN Red List of Threatened Species often relies on specialist groups to provide systematically col- lated metrics on population sizes and trends in abundance over time (Barnes et al., 2015). Aspects of the ecology and habitat of a species can make collecting such data difficult (González-Suárez et al., 2012). Population size is usually determined using methods that


T JEANNE A. MORTIMER* (Corresponding author, orcid.org/0000-0001-6318-


2890) Department of Biology, University of Florida, Gainesville, Florida 32611, USA, and Turtle Action Group of Seychelles, Victoria, Mahé, Seychelles E-mail jeanne.a.mortimer@gmail.com


NICOLE ESTEBAN* Department of Biosciences, Swansea University, Swansea, UK


ANTENOR NESTOR GUZMAN Naval Facilities Engineering Command Far East Public Works Department, Environmental Office, Diego Garcia, British Indian Ocean Territory


GRAEME C. HAYS Deakin University, Geelong, Australia *Contributed equally


Received 2 April 2019. Revision requested 16 July 2019. Accepted 30 August 2019. First published online 10 February 2020.


include direct sampling (e.g. mark–recapture through tag- ging) and indirect sampling (e.g. track or clutch observa- tions) but such data may be difficult to obtain for species in remote or inaccessible habitats (e.g. transboundary migrating birds, Bishop et al., 2015; or trans-equatorial migrating basking sharks, Skomal et al., 2009). Direct observation is difficult for marine species that are sub- merged most of the time, range widely or occur at low densities. For some groups, however, aspects of life history provide windows of opportunity to assess their status. For example, species of seabirds and seals may come ashore and congregate to breed, facilitating collection of ex- tended time series of abundance data (Paleczny et al., 2015; Collins et al., 2016; Trillmich et al., 2016). Marine turtles are another group for which population status is often assessed using annual numbers of nesting females or egg clutch production as indicators (Balazs & Chaloupka, 2004;SWOTReport, 2017). In this manner, global and regional populations of all


marine turtle species have been assessed since 1996. IUCN categorizes green turtles Chelonia mydas as Endangered


Oryx, 2020, 54(3), 332–343 © 2020 Fauna & Flora International doi:10.1017/S0030605319001108


o assess species conservation status, key biological questions focus on population status, trends and spatio-


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148