search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
408 P. Strampelli et al.


TABLE 1 Model selection parameters for spatially explicit capture–recapture models in R package secr. Model


Description secr.0


secr.sexsecr.sex.g0 secr.sex


No variation between sexes σ4 varies between sexes g05 varies between sexes g0 and σ vary between sexes


1Akaike Information Criterion, adjusted for small sample size. 2Difference from best ranking (lowest AIC) model. 3Number of model parameters. 4Spatial parameter related to home range size. 5Probability of capture at the home range centre.


frequencieswere 9, 3, 2, 2 and 1 for the five males; 6 and 4 for the two females; and 3 and 1 for the two unsexed individuals.


Density estimation


The bestmodel (AICc = 360.36) did not allow g0 or σ to vary with sex (secr.0),andreceivedsignificantlymore support than the next best alternative (secr.sex.σ, ΔAICc = 10.47; Table 1). The leopard density estimate of the best-fitted model


(secr.0)was 2.60 ± SE 0.96 adults/100 km2. Capture prob- ability at the centre of the home range (g0) was estimated to be 0.043 ± SE 0.013, and the spatial parameter (σ)to be 1,936 ± SE 279 m(Table 2). Buffer width stabilized at 10,000 m, as reported by similar leopard density studies (Gray & Prum, 2012; Borah et al., 2013).


Discussion


Leopard density Our study provides a baseline leopard density estimate for a relatively well-protected area and the first empirical estimate for a leopard population in Mozambique. Usingspatially explicit capture–recapturemodelswe estimated leopard density in the Xonghile Game Reserve to be 2.60 ± SE 0.96 adults/100 km2. Although this is low com- pared to studies elsewhere in sub-Saharan Africa, it is higher than estimates from other protected areas in southern Africa: 0.60 leopards/100 km2 in the dry savannahs of the Kalahari Gemsbok National Park (South Africa; Bothma & Le Riche, 1984), 0.62/100 km2 in the savannah/woodland Cederberg Wilderness Area (South Africa; Martins & Harris, 2013) and 1.50/100 km2 in the savannah habitat of the Kaudom Game Reserve, Namibia (Stander et al., 1997). In South Africa’s Kruger National Park, contiguous


with the Reserve’s western border, high leopard densities of 30.3/100km2were reported for the Sabie riverine area (Bailey, 1993), and 12.7/100km2 in theN’wantesi concession (Maputla et al., 2013).We believe the observed differences are probably a reflection of different habitats, and consequently prey avail- ability, between sites.Whereas density estimates fromKruger


TABLE 2 Parameters and density estimated by the best model (secr.0).


Parameter1 g0


σ (m) Leopards/100 km2 Mean ± SE


0.043 ± 0.013 1963 ± 279


2.599 ± 0.957 95% CI


0.024–0.078 1464–2562 1.292–5.231


1g0, probability of capture at the home range centre; σ, spatial parameter related to home range size.


National Park came from highly productive riverine forests (Bailey, 1993) and savannah woodlands (Maputla et al., 2013), Xonghile Game Reserve predominantly comprises nutrient-poor, lower-productivity sandveld,which sustains lower animal densities (Redfern et al., 2003; Scholes et al., 2003). The relatively high level of protection in the Reserve (LA&KTE, unpubl. data) suggests that the lowprey densities are not a result of human hunting activities. Nonetheless, the Reserve could be acting as a population


sink for leopards dispersing from Kruger National Park, through anthropogenic mortalities occurring in the adjacent non-protected areas. Estimates for anthropogenic leopard mortalities in the area are not available, but it is possible that individuals venturing into the non-protected areas adjoining the Reserve could be suffering relatively high anthropogenic mortality rates,whichcouldlower populationdensities and at- tract leopards from surrounding areas (e.g. Kruger National Park). This vacuumeffect has been documented for large car- nivores and leopards in particular, and it may cause edge ef- fects that affect the interior of even large protected areas (Loveridge et al., 2007). Longer term camera trapping or track- ing using collars equipped with global positioning system units, combined with social surveys targeting the communities outside the Reserve, are necessary to ascertain whether this af- fects leopards in and around Xonghile Game Reserve.


Methodological considerations and sex-specific parameters


The majority of our stations had only one camera trap, ra- ther than the recommended two-camera set-up (one for


Oryx, 2020, 54(3), 405–411 © 2018 Fauna & Flora International doi:10.1017/S0030605318000121 AICc1


360.364 370.835 371.280 394.663


ΔAICc2 0.000


10.471 10.916 34.299


AIC model weights


1 0 0 0


Model


K3 4


5 5 6


deviances 324.364


322.663 323.281 322.835


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148