This page contains a Flash digital edition of a book.
waveform contains noise. For the 100% value of SEL, it would be necessary to add 0.45dB to the 90% value.


160. The SEL for each impulsive noise event can also be aggregated by summation to calculate the total SEL (or SEL dose) for the entire piling sequence (Southall et al. 2007; Theobald et al. 2009). The concept of SEL dose is entirely analogous to the use in air acoustics to quantify the total noise dose for a subject receiver. The pulse duration is defined as the time occupied by the central portion of the pulse, where 90% of the pulse energy resides.


161. The calculation of the pulse duration and SEL are described graphically in Plate 9.16. Image A shows a typical pulse waveform, and image B shows a plot of the normalised energy in the pulse waveform against time. Indicated on the plot are the 5% and 95% energy levels and the t5 and t95 times that define the pulse duration.


Plate 9.16. Example of pulse time waveform for analysis, and B: Calculation of SEL over pulse duration.


9.9.1.5 Source Level 162. A metric used frequently in underwater acoustics to describe the source output amplitude is that of Source Level (SL), a term not commonly seen in air acoustics where the acoustic power is more commonly used. This term originates from sonar engineering, and as with acoustic power, the Source Level may be considered as a characteristic of the source itself. The decibel units for this quantity may be written as dB re 1 μPa·m, however the unit is much more commonly seen expressed as dB re 1 μPa at 1m. It should be noted that Source Level is an idealised acoustic far-field parameter and is not necessarily equal to the acoustic pressure or received level measured at a distance of 1 metre from the source. Instead, it may be considered as the sound pressure level that would exist at a nominal range of 1m from the acoustic centre of an equivalent simple monopole source, which radiates the same acoustic


Preliminary Environmental Information May 2014


East Anglia THREE Offshore Windfarm Appendix 9.1 Underwater Noise Modelling 83


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150